Mutability in Quantum Programming

Alex Rice, alex.rice@ed.ac.uk
University of Edinburgh

X THE UNIVERSITY
Y- of EDINBURGH

Imperative vs Functional

A key choice when developing a quantum language is whether to
take an imperative or functional style.

Imperative: Functional:
def u(ql, g2): def u(ql, g2):
H(ql) q3 = H(ql)
CX(ql, q2) g4, g5 = CX(q3, g2)

return q4, g5

Theimperative code is more concise, and can leverage that unitary
gates have equal numbers of inputs and outputs. This motivates
the search for effective type systems for working with mutable
references to qubits.

Within the context of pure functional programs, it is well under-
stood that quantum data should be treated linearly. Consider the
following program:

def u(qgl):
q2 = H(ql)
q3 = H(ql)

Programs like the one above violate the no-cloning theorem and
are disallowed by a linear type system.

Of course, mutable references to quantum data should not be
treated linearly, but it turns out that such a program cannot be
written at all with mutable references to quantum data. Unfortu-
nately, the need for some form of linearity is demonstrated by the
following two cases.

Use after measure Parallel use

def use after measure(q):
X = measure(q)

H(q)

def use twice(q):
CX(q, q)

Both of the above programs can be disallowed by a borrowing
based system, as used by Rust. The first can be disallowed by
having measurement take quantum data by value instead of
reference, and the second is disallowed as it aliases the mutable
reference q.

Due to this we argue that the “mutability xor aliasing” paradigm is
the key to safe quantum programming, combining the ergonomics
of mutable references with the safety of functional linear types.

Ll

Qubit
reference

Duplicated use X)—>

Reuse v

A Prototype Type System

The following toy language is:

« Simple and efficient to typecheck

 Easy to use from a user’s perspective

« Ensures safe (linear) use of mutable quantum data

The system enforces single ownership of mutable references,
maintaining the invariant that all references point to disjoint data.
To achieve this, our judgements take the following form:

'|SEt: A4S

whereI'is a context, tisaterm,and A is a type, which ranges over
Qubits Q, (classical) booleans 2, and the unit type T.

Instead of removing used variables from the context, we add them
to aset S of used variables, returninga new set §’. Such a systemiis
more flexible, being able to deal with indexing and slicing, as well
as producing more meaningful errors (see below).

We now consider the typing rules for the CX gate and measure:

' SkEs: QA4S
['| §F measure(s) : 248’

In this rule, the variablesin s are stored in §, preventing them from
being used in subsequent statements, avoiding use after measure.
' SkFs: Q4S8 T|8§8+Ht: Q48"

I'| §FCX(s,t)4S

The rule for CX uses &’ as the variable set when typechecking ¢,
preventing it using the same variables as s. Further, the output
variable set is equal to the input set, allowing the qubit references
to be reused in later gates.

To allow forindexing and slicing, the set § can be changed to store
triples (x,n, m) where x is a variable of a quantum register type
and n..m is the slice of that register which has been used. Such a
set can be efficiently represented as a tree-based set.

By converting § from a set to a map from used variables to the
text span where they are used, informative error messages can be
given to the user:

x Variable g has been used in two incompatible locations

[—[54:6]
53 | def Bad(q : Q):
54 | CX(q, q)

' T T

| — Second use

: L— First use
L

Mutability without aliasing combines ergonomics with safety




	Imperative:
	Functional:
	Use after measure
	Parallel use

