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Imperative vs Functional

A key choice when developing a quantum language is whether to 

take an imperative or functional style.

Imperative:

def u(q1, q2):
  H(q1)
  CX(q1, q2)

Functional:

def u(q1, q2):
  q3 = H(q1)
  q4, q5 = CX(q3, q2)
  return q4, q5

The imperative code is more concise, and can leverage that unitary 

gates have equal numbers of inputs and outputs. This motivates 

the search for effective type systems for working with mutable 

references to qubits.

Linearity

Within the context of pure functional programs, it is well under­

stood that quantum data should be treated linearly. Consider the 

following program:

  def u(q1):
    q2 = H(q1)
    q3 = H(q1)

Programs like the one above violate the no-cloning theorem and 

are disallowed by a linear type system.

Of course, mutable references to quantum data should not be 

treated linearly, but it turns out that such a program cannot be 

written at all with mutable references to quantum data. Unfortu­

nately, the need for some form of linearity is demonstrated by the 

following two cases.

Use after measure

def use_after_measure(q):
  x = measure(q)
  H(q)

Parallel use

def use_twice(q):
  CX(q, q)

Both of the above programs can be disallowed by a borrowing 

based system, as used by Rust. The first can be disallowed by 

having measurement take quantum data by value instead of 

reference, and the second is disallowed as it aliases the mutable 

reference q.

Due to this we argue that the “mutability xor aliasing” paradigm is 

the key to safe quantum programming, combining the ergonomics 

of mutable references with the safety of functional linear types.

Qubit

reference

H

Reuse ✔️

H

Duplicated use ❌️

CX

A Prototype Type System

The following toy language is:

• Simple and efficient to typecheck

• Easy to use from a user’s perspective

• Ensures safe (linear) use of mutable quantum data

The system enforces single ownership of mutable references, 

maintaining the invariant that all references point to disjoint data. 

To achieve this, our judgements take the following form:

Γ | 𝒮︀ ⊢ 𝑡 : 𝐴 ⊣ 𝒮︀′

where Γ is a context, 𝑡 is a term, and 𝐴 is a type, which ranges over 

Qubits ℚ, (classical) booleans 𝟚, and the unit type ⊤.

Instead of removing used variables from the context, we add them 

to a set 𝒮︀ of used variables, returning a new set 𝒮︀′. Such a system is 

more flexible, being able to deal with indexing and slicing, as well 

as producing more meaningful errors (see below).

We now consider the typing rules for the CX gate and measure:

Γ | 𝒮︀ ⊢ 𝑠 : ℚ ⊣ 𝒮︀′

Γ | 𝒮︀ ⊢ measure(𝑠) : 𝟚 ⊣ 𝒮︀′

In this rule, the variables in 𝑠 are stored in 𝒮︀, preventing them from 

being used in subsequent statements, avoiding use after measure.

Γ | 𝒮︀ ⊢ 𝑠 : ℚ ⊣ 𝒮︀′ Γ | 𝒮︀′ ⊢ 𝑡 : ℚ ⊣ 𝒮︀″

Γ | 𝒮︀ ⊢ CX(𝑠, 𝑡) ⊣ 𝒮︀

The rule for CX uses 𝒮︀′ as the variable set when typechecking 𝑡, 

preventing it using the same variables as 𝑠. Further, the output 

variable set is equal to the input set, allowing the qubit references 

to be reused in later gates.

To allow for indexing and slicing, the set 𝒮︀ can be changed to store 

triples (𝑥, 𝑛,𝑚) where 𝑥 is a variable of a quantum register type 

and 𝑛..𝑚 is the slice of that register which has been used. Such a 

set can be efficiently represented as a tree-based set.

Errors

By converting 𝒮︀ from a set to a map from used variables to the 

text span where they are used, informative error messages can be 

given to the user:

× Variable q has been used in two incompatible locations

   ╭─[54:6]
53 │ def Bad(q : Q):
54 │   CX(q, q)
   ·      ┬  ┬
   ·      │  ╰── Second use
   ·      ╰── First use
   ╰────

Mutability without aliasing combines ergonomics with safety


	Imperative:
	Functional:
	Use after measure
	Parallel use

