Quantum circuits are just a phase

CHRIS HEUNEN, University of Edinburgh, United Kingdom

LOUIS LEMONNIER, University of Edinburgh, United Kingdom
CHRISTOPHER MCNALLY, Massachusetts Institute of Technology, United States
ALEX RICE, University of Edinburgh, United Kingdom

Quantum programs today are written at a low level of abstraction—quantum circuits akin to assembly
languages—and the unitary parts of even advanced quantum programming languages essentially function as
circuit description languages. This state of affairs impedes scalability, clarity, and support for higher-level
reasoning. More abstract and expressive quantum programming constructs are needed.

To this end, we introduce a simple syntax for generating unitaries from “just a phase”; we combine a
(global) phase operation that captures phase shifts with a quantum analogue of the “if let” construct that
captures subspace selection via pattern matching. This minimal language lifts the focus from gates to eigen-
decomposition, conjugation, and controlled unitaries; common building blocks in quantum algorithm design.

We demonstrate several aspects of the expressive power of our language in several ways. Firstly, we
establish that our representation is universal by deriving a universal quantum gate set. Secondly, we show
that important quantum algorithms can be expressed naturally and concisely, including Grover’s search
algorithm, Hamiltonian simulation, Quantum Fourier Transform, Quantum Signal Processing, and the Quantum
Eigenvalue Transformation. Furthermore, we give clean denotational semantics grounded in categorical
quantum mechanics. Finally, we implement a prototype compiler that efficiently translates terms of our
language to quantum circuits, and prove that it is sound with respect to these semantics. Collectively, these
contributions show that this construct offers a principled and practical step toward more abstract and structured
quantum programming.

1 Introduction

Quantum computers can accommodate algorithms that solve certain classes of problems exponen-
tially faster than the best known classical algorithms [46]. Spurred on by this promise, quantum
hardware has developed to the point where it’s now a commercial reality. The current state of the
art is still modest—qubit counts in the hundreds, coherence times in the microseconds, and gate
error rates in the hundredths of a percent—but capabilities keep advancing at pace [16].

As quantum computing hardware keeps developing, the bottleneck to useful application is
increasingly shifting to quantum software development. One reason for this lag is the low level of
abstraction at which quantum computers are currently programmed. Most quantum software today
is written in terms of quantum circuits (see Figs. 1 and 2 for an example)—or worse, using hardware-
specific execution instructions. These representations suffice for small-scale experimentation and
applications, but face several challenges in the longer term:

e Scalability. Proven classical software engineering practice and principles show that devel-
oping and maintaining programs at larger scales needs functionality supporting modular-
ity [53]. A related challenge is that interfacing with existing classical (high-performance)
infrastructure similarly requires more structured representations.

o Automatability. Empirical evidence shows that the vast majority of quantum circuits im-
plementing useful quantum algorithms is taken up by ‘bookkeeping’ [58]. The burden of

Authors’ Contact Information: Chris Heunen, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom,
chris.heunen@ed.ac.uk; Louis Lemonnier, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom,
louis.lemonnier@ed.ac.uk; Christopher McNally, Center for Quantum Engineering, Massachusetts Institute of Technology,
Cambridge, United States, mcnallyc@mit.edu; Alex Rice, School of Informatics, University of Edinburgh, Edinburgh, United
Kingdom, alex.rice@ed.ac.uk.

https://orcid.org/0000-0001-7393-2640
https://orcid.org/0000-0003-1761-3244
https://orcid.org/0000-0002-4927-0613
https://orcid.org/0000-0002-2698-5122
https://orcid.org/0000-0001-7393-2640
https://orcid.org/0000-0003-1761-3244
https://orcid.org/0000-0002-4927-0613
https://orcid.org/0000-0002-2698-5122

2 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

—e— E‘—o—
<+ - T
- {Aro-fr-e{Te-m-e-{THA

Fig. 1. The Toffoli gate expanded into a quantum circuit of native gates. The expansion obscures that the
operation commutes with Z measurement.

having to write this boilerplate code can be shifted from the programmer to automated
support systems when the representation has a high enough level of abstraction.

o Understandability. At the root of these challenges lies the problem that quantum circuits are
too fine-grained for human programmers to understand quantum algorithms at a natural
level. Intuition for quantum algorithms comes from quantum information theory, and
ultimately linear algebra. Having to translate this in terms of specific quantum gate sets
is merely an obscuring step. According to the empirically supported weak Sapir-Whorf
hypothesis from cognitive linguistics, a language’s structure influences a speaker’s ability
to perceive ideas, without strictly limiting or obstructing them [1]. Having a more abstract
principled representation of quantum programs can therefore aid in the discovery of new
quantum algorithms.

Additionally—but we will not address this challenge explicitly here—to enable optimising compiler
passes, it is helpful to start at a higher level of abstraction, so that as much as possible of the
programmer’s intent is retained [32]. At higher levels of abstraction, different optimisations become
apparent. For example, the Toffoli gate is easily seen to commute with Z measurements, but
this property is obscured when it is expressed in terms of hardware-native gates as in Fig. 1. To
better support reasoning, optimisation, program synthesis and verification, principled quantum
programming needs a representation with more expressive power and structural clarity. Working
primarily with quantum circuits is just a phase in the coming of age of quantum programming.

Unfortunately, quantum programming requires different abstractions to classical programming;
existing classical constructs do not transfer cleanly. Conditional if-then-else constructions need care
within quantum computing [6, 9]. More generally, the quantum setting allows causal constructs
fundamentally incompatible with classical control flow [13, 48]. Control structures such as for and
while loops are limited because they cannot inspect the quantum variable controlling the loop
without altering its value [4, 50]. The no-cloning theorem makes practical implementations of
recursion schemes over quantum states very difficult [60, 64, 66]. Similarly, there are foundational
challenges to higher-order structure [47, 52].

As a result, the abstractions available in current quantum programming languages are limited
and broadly fit into two categories:

e Many languages and libraries directly describe circuits [26, 58]. These languages often have
various quantum gates directly as primitives, often adding orthogonal features such as
classical control [17, 23, 54] or uncomputation [5, 31].

e Other languages take a much larger departure from the circuit model. Some are based
on reversible computing [10, 27], including languages which utilise symmetric pattern
matching [18, 39, 50] to define unitary operations. Alternative approaches [7] build on
models of quantum computing such as the ZX-calculus [15]. Although these languages offer
different abstractions over the circuit model, it is unclear how (or known to be hard [19]) to
compile them down to circuits.

Quantum circuits are just a phase 3
J P

Oracle Diffusion

HF——{H}® S H}—

Fig. 2. A circuit for an instance of Grover’s algorithm searching for two marked bit strings 011 and 101 [22].
The intent of the programmer (and the meaning of the program) is obfuscated by the circuit representation.

In this paper, we position ourselves between these two settings, offering an abstraction over
quantum circuits while retaining a linear time compilation algorithm. We do this by introducing a
new quantum programming construct, a quantum analogue of the “if let” statement, as used in
Rust [37], which subsumes common operations such as conjugation and controlled blocks. When
combined with an explicit treatment of global phase, often primitive quantum gates can be derived.
It leverages the fact that many quantum algorithms, and in fact many linear algebra techniques,
have at their heart a decomposition into eigenspaces and a manipulation of eigenvectors; the
expression

if letp thene

represents the former, while the latter is captured by the global phase operator
Ph(0).

The pattern p specifies a case split by selecting a subspace of a variable’s state space, with the “if
let” expression applying its body to this subspace. Crucially, however, this subspace is not limited
to align to classical values like |0) or |1), but also quantum values like |+) or higher-dimensional
subspaces. Our syntax consists of just a phase, and is a simple but useful expression of the essence
of eigendecompositions from linear algebra in quantum programming. We argue this in four ways.

First, this construct is expressive enough to serve as a foundational abstraction. For example,
conventional gate-level operations, that are usually taken as primitive, instead emerge as derived
constructs. Here is a standard computationally universal gate set in the combinator language
introduced in Section 3:

Z = if let|1) then Ph(x) X = if let|-) then Ph(x)
T := if let|1) then Ph(7/4) Y = if letS - |-) then Ph(x)
H := if let Y/* - |1) then Ph(x) CX := if let|1) ® id; then X

As a second argument, we show that this language captures a broad class of quantum algorithms.
For example, Grover’s search algorithm (whose circuit representation is given in Fig. 2) iterates
two main subroutines. The most important one, the diffusion operator

Ph(r) ® idy,;if let|+) ® - - - ® |+) then Ph(rx)
is a one-liner. The programmer has to supply the oracle operator
if let |w1) ® -+ - ® |wy) then Ph(r),

where wj is the j bit in the binary expansion of the marked element, which also simplifies. In a
similar way, we show that our representation can succinctly express important quantum algorithms
including Quantum Fourier Transform, Hamiltonian simulation, Quantum Signal Processing, and
Quantum Eigenvalue Transformation.

Third, we validate the practicality of our approach through a prototype compiler that translates
our higher-level constructs into standard quantum circuits efficiently, which we present as an

4 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

evaluation function converting any term to a canonical “circuit-like” form. This may also be regarded
as an operational semantics for the language.

Fourth, we equip the language with a categorical denotational semantics which naturally relates
to established models of quantum theory [10, 20]. More precisely, we build on rig dagger categories
with independent coproducts. This semantics-first approach to language design fits in the larger
programme of categorical quantum theory [28, 30]. We employ these semantics to prove soundness
of our compilation algorithm.

Implementation. We include a prototype implementation of the combinator language [49]. This
takes the form of a Rust executable and library, and can be built with cargo (tested with version
1.86.0). This implementation parses terms, performs typechecking, computes inverses and square
roots, runs evaluation to a circuit, and finally outputs the matrix represented by the term. HTML
documentation of this library is provided at alexarice.github.io/phase-rs.

Related work. Our work is set in the general framework of quantum control flow [56, 57], as opposed
to classical control flow. In quantum control, the branching is decided by quantum data, leaving
the result in a potential quantum superposition. There is a number of ongoing research projects
around quantum control flow, and more specifically, on the integration of quantum control in
programming languages paradigms.

e Symmetric pattern matching [11, 39, 50] is a proof-of-concept programming language
for quantum control, in which control is only quantum. Similar to a A-calculus, its only
primitives are type connectives, completed with complex numbers for the quantum aspect of
the language; these complex numbers allow for the expression of any unitary operator in the
language. However, like the A-calculus, it is an abstract language, and does not reasonably
compile to quantum circuits or any quantum hardware. Symmetric pattern matching can
be seen as an improvement of QML [3], also entirely based on quantum if statements, but
less scalable.

e There exists a whole research program on proof languages that include quantum control [21]
based on intuitionistic linear logic. While this approach is fully scalable and mathematically
sound, it is geared towards logical intuition and understandability rather than quantum
programming.

e Most quantum programming languages in the literature are circuit description languages,
possibly with a quantum if statement [24, 64, 65], effectively acting as classical programming
languages whose values are quantum circuits. In these languages, unitaries come as constants
that can be called and used as black boxes. This is hard to scale or automate.

e Qunity [59] mixes symmetric pattern matching and circuit description languages to allow
for some form of quantum control while keeping a syntax relatively close to quantum
circuits. It, however, still contains most unitary operations as constants. The compiler has
exponential blow-ups so scalability is a challenge.

e Silq [5, 31] has support for a quantum if but only for the type (qu)bit, and therefore lacks
in scalability compared to what we are able to achieve. The language also does not come
equipped with a compositional denotational semantics to support the validity of the opera-
tional semantics.

e The zeta calculus [7] is an abstract language—in the sense of the A-calculus, which offers
a compilation to the ZX-calculus, a graphical language for linear maps between finite-
dimensional Hilbert spaces. However, the operations that the zeta calculus represent are
not only unitary, since it allows to copy and to discard on the Z and X bases. There is no
known way of compiling the zeta calculus (or the ZX calculus) to quantum circuits.

alexarice.github.io/phase-rs

Quantum circuits are just a phase 5
J P

e Universal quantum if conditional [6]. On a more foundational aspect of quantum computing,
it is known that there is no quantum operation that operates a generic “quantum if” on a
black box oracle. It means in particular that quantum theory does not allow for an operator
Axy.if x then y.

Structure of this article. After briefly reviewing the necessary background about quantum computing
in Section 2, we introduce the syntax of our combinator language in Section 3, in addition to
describing certain meta-operations on terms. Next, Section 4 details four examples of important
(families of) quantum algorithms in our language. In Section 5, we discuss a prototype compiler
from the language into quantum circuits. Denotational semantics are developed in Section 6, and
are used to exhibit equalities that hold within the language, and prove our compilation algorithm
is sound. We finally discuss different potential settings for our “if let” construction in Section 7,
describing alternative nominal representations of the core combinator language. Section 8 concludes
by discussing future developments.

Acknowledgements. The proofs of Theorems 20 and 23 came out of discussions with the authors
of [45]. We extend our thanks to the people of the Quantum Programming group in the University
of Edinburgh for their support and proofreading. This research was funded by the Engineering and
Physical Sciences Research Council (EPSRC) under project EP/X025551/1 "Rubber DUQ: Flexible Dy-
namic Universal Quantum programming". C.M. is supported by the U.S. Army Research Office Grant
No. W911NFF-23-1-0045 (Extensible and Modular Advanced Qubits). The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the U.S. Government.

2 Quantum Computing

We start with the essential background on quantum computing. We will only be concerned with
unitary quantum computing, and have no need to consider the measurement readout at the end of
the computation in detail. For more details we refer to textbooks such as [46, 62].

Qubits. The unit of quantum information is the qubit. The state of a qubit is a unit vector ¢ = ()
in the Hilbert space C?, that is, a pair of complex numbers x and y such that |x|? + |y|? = 1. This
vector is often written in ket notation |@). Two special vectors are the computational basis states
|0y = (§) and [1) = (9); a general state |¢) is in a superposition of these two. Two such states that
we will often use are |[+) = \/% [0) + \% |1) and |-) = \/% [0) — \L@ [1).

Entanglement. In a system with multiple qubits, the state is a unit vector in the tensor product. For
example, if the first qubit is in state |0), and the second qubit is in state |1), then the state of the
compound system is the vector |[0) ® [1) € C* ® C?, also written as |01). Not all states of a system
with multiple qubits are of this form. For example, the state «/LE (]00) + |11)) is entangled: it cannot

be written in the form |¢) ® |¢/). In general, the states of a system with n qubits can range over the
unit vectors in C? ® - - - ® C? ~ C"),

Unitaries. Qubits can undergo operations specified by unitary matrices. These are 2"-by-2" matrices
U with complex entries satisfying UTU = 1 (and hence also UUT = 1), that is, the matrix is invertible
and its inverse is its conjugate transpose. On single qubits, standard operations include:

111 01 0 i 10 10
A1 B B VY B P B e

The matrix H is called the Hadamard transformation, and satisfies H|0) = |[+) and H |1) = |-).

6 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Control. Another way to combine two n-qubit systems is by direct sum as in the left-hand side of
C® C®) ~c®™) ~ 2o,

Notice how this ‘sum type’ can also be described as a ‘product type’ with a new qubit as in the
right-hand side. This new qubit is called the control qubit, because it controls which operation
is applied to the other, target, qubits, as follows. Any n-qubit unitary U can be extended to an
(n + 1)-qubit unitary CU, defined as I @ U or given by the block diagonal matrix

I0
U= [0 U]
where I is the identity on C?"). This controlled-U will apply U only if the control qubit was in the
state |1); otherwise it will do nothing. For example, the controlled-X gate CX is given by

HE

— 1

CX = 0001
0010

Since the control qubit can be in superposition, both branches are executed in superposition, which
is a key difference from classical control flow, where only one branch is executed. Observe especially
that this quantum control is predicated on the computational basis {|0),|1)} of the control qubit C2.
Many important quantum algorithms need to perform controlled operations on different subspaces
than those aligned along the linear spans of |0) and |1).

Phases. Two unitary matrices U and V are indistinguishable in their measurable effect on qubits
when they are equal up to a global phase: U = ¢’V for some 6 € [0, 2). In other words, we consider
the identity matrix to model the same computation multiplying with the scalar e’?. Nevertheless,
local phases

P@=E$]

are not identified with the identity, and in fact form the heart of many quantum algorithms, despite
the fact that they can be regarded as controlled 0-qubit global phase operations. For example, notice
that Z = P(xr) and T = P(7/4).

Circuits. Any quantum computation is described by a unitary matrix. These are typically built
up from one- and two-qubit unitaries, also called quantum gates, that are combined using tensor
products and matrix multiplication. It is customary to draw such a composite unitary as a quantum
circuit: a graphical depiction where horizontal wires represent qubits acted upon by quantum gates
while they flow from left to right. A controlled U gate is depicted as on the left below, and in
particular the controlled X gate is depicted as on the right below.

——
e

Gates can similarly be controlled on multiple qubits, such as the CCX matrix, or Toffoli gate, in
Fig. 1. See Fig. 2 for another example of a quantum circuit.

Eigendecomposition. For a linear map U : H — H, its eigenvalues are scalars A such that the
subspace {v : Uv = Av} is non-zero. Such subspaces are referred to as eigenspaces and the vectors
they contain are called eigenvectors of the map U. When U is unitary, there exists a basis {|A;)} of
eigenvectors for H, each with eigenvalue 4;, allowing us to obtain the eigendecomposition:

U=ZMWMA

Quantum circuits are just a phase 7
J P

The maps |A;XA;| are projections, maps p such that p? = p.

Further, U admits a diagonalisation U = QAQT, where A is the diagonal matrix with entries A;.
In this sense, every unitary map can be realised as a sequence of phase rotations applied to its
eigenspaces, motivating our representation of them utilising just a phase.

3 Syntax

We are now positioned to introduce the core language of this paper, a combinator-based language
for describing unitary linear transformations, with two basic building blocks: a global phase unitary,
and a quantum “if let” allowing a restricted form of pattern matching.

In this combinator-style language, terms represent unitary maps on a set number of qubits.
The types for unitaries are therefore very simple, and are in direct correspondence with natural
numbers: a term ¢ of type qn <> qn will represent a unitary map C?* — C?", and this is the only
possible type a unitary can have. This language has no variables, and hence its typing derivations
do not require a context and are simply written:

Ft:qn e qgn

foratermtandn € N.

We introduce a (global) phase operation as the only primitive “gate”. It takes the form of a 0-qubit
unitary (and should not be confused with the 1-qubit phase gate commonly referred to as S). For
each angle' 6 € R we write:

F Ph(8) : q0 < q0

To create larger programs, we must be able to compose unitaries together. This can be done
sequentially or in parallel. We further require an explicit identity term. These have the following
typing rules:

Fs:qn < qn Ft:qn e qn Fs:qn < qn Ft:qm e gqm

Fs;t:qn e qn Fs®t:q(n+m) & q(n+m) Fid, :qn e qn

At this point, this syntax can only represent unitaries that perform a global phase, which, as
already noted in Section 2, have no computational effect in a quantum circuit. The ability to perform
arbitrary quantum gates will be derived from our quantum “if let” construction. This construction
allows a unitary to be performed on a subspace specified by a pattern. Patterns p are given types of
the form qn < qm and correspond to isometries i: C2" — C?". The “if let” expression then has the
following typing rule:

I-p:qn<qm I-s:qn<—>qn

Fif letp thens: qm & qm

One intuition for the action of the “if let” expression is the following: if s represents the unitary U,
and p represents the isometry i, then the unitary represented by “if let p then s” performs U on the
range subspace of i, and the identity on its orthogonal complement. The “if let” construction can
be viewed as a restricted form of symmetric pattern matching [50].

!In practice we must fix a (countable) group of angles in order for this syntax to be finitary.

8 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Patterns are given by a separate but related syntax to terms, for which the rules are given below:

Fs:qn e qn

F10) : q0 < ql F|1) : q0 < q1 F|+):q0 < ql F|—):q0 < ql Fs:qn<qn
Fp:qn<qm Fq:ql<qn Fp:qn<qm Fq:qn <qm
Fp-q:ql<qm Fp®q:qn+n’) <qim+m’)

The latter three rules observe that all unitary maps are also isometries, and that isometries are
closed under composition and tensor products. Each pattern |x) represents the isometry z — z |x) :
C — C?%. We note that the composition for patterns is in function composition order, in contrast to
the diagrammatic composition order for terms.
We highlight three important cases of this construction:
o If p : q0 < gn, then the term if let p then Ph(8) represents the unitary which maps p(a) +v
to ep(a) + v (where (p(1),v) = 0), which has eigenvalues 1 and e,
e Lets: qn < qnrepresent the unitary U and consider the term:

if let|1) ® id, then s
The unitary represented by this term sends any input of the form |1) ® v to |1) ® U(v),
and leaves any input of the form |0) ® v unchanged. This term therefore represents the

controlled U operation.
e Suppose s, t : qn <> qn, representing unitaries U and V. Then the unitary represented by

if lets thent
is the unitary U o V o U", which sends U (v) to U(V (v)).

Example 1 (X gate). Our first example is the term:
if let |-) then Ph(r)
By the intuition above, this represents a unitary which maps |-) to e’ |-) = — |-), and |+) (which is
orthogonal to |—)) to |+). Its action on other vectors is determined by linearity; |0) = % (J+) + |-))
is sent to % (]+) = |-)) = |1) and similarly |1) is sent to |0), making this the quantum X gate.
The syntax presented here allows the simple definition of two important meta-level operations:

inversion and exponentiation. The ability to obtain the inverse of a quantum program is not
uncommon, yet we highlight the simplicity of the definition below.

Definition 2 (Inversion). Given a term F ¢ : qn <> qn, we define its inverse - t' : qn < qn by
structural induction on the syntax:
Ph(6)" = Ph(-6) (if let p then s)T = if let p then s' seot) =s"et (s;0)7 =136
A simple induction shows the resulting term is well-typed.
For terms which do not contain the composition constructor (in particular terms which consist

of a single “if let” statement), we can perform the much more general operation of exponentiation.
The ability to define exponentiation exemplifies the utility of our syntax.

Definition 3 (Exponentials). Let+ ¢ : qn <> qn be a “composition-free” term, i.e. a term containing
no instances of ;. For a real number «, define the exponentiation + t* : qn < qn by structural
induction:

Ph(6)* = Ph(ab) (if let p then s)¥ = if let p then s* (s®@t)* ="t

Quantum circuits are just a phase 9
J P

Z = if let|1) then Ph(x) S := VZ =if let|1) then Ph(7/2)

X := if let |-) then Ph(r) V := VX =if let|-) then Ph(7/2)

Y := if let |-) then Ph(x) T := VS =if let|1) then Ph(7/4)
CZ = if let|1) ® |1) then Ph(x) CX := if let|1) ® |-) then Ph(x)

H := if let Y/* - |1) then Ph(x)
= if let(if let S - |=) then Ph(7/4)) - |1) then Ph(x)

Fig. 3. Definitions of common quantum gates in the combinator syntax. A fully universal gate set can be
generated with just a phase.

Similar to above, a simple induction shows exponentiation is well-typed. We note that the case
where & = —1 coincides with the inversion operation. We write V1 for t'2.

We highlight the use of the exponentiation operation by applying it to the X gate.

Example 4. The quantum V = VX gate, which satisfies V o V = X is given by the matrix:

1
V==
2

1+i1-i
1—-il1+i

Deriving this matrix from only the definition of X (or indeed obtaining a quantum circuit for this
gate) is non-trivial, yet its definition in our language is immediate from the definition of the X and
exponentiation:

V = X" = if let |-) then Ph(7/2)

This term represents the unitary given by the matrix above.

We are now able to recover the definitions of many common quantum gates, which are given
in Fig. 3. We emphasise that these gates are approximately universal, and hence all unitaries (of
dimension 2") can be represented using this language.

Example 5. The 5-qubit GHZ state (= 1/v2(|00000) + |11111))) can be prepared from the zero state
as follows, where H and X are defined in Fig. 3:

H ® idy;if let |1) @ idg then X @ X ® X ® X

This highlights one of the flaws of the combinator style syntax, to apply a Hadamard gate to the first
qubit, we must explicitly tensor it with the remaining qubits. Further, the pattern |1) ® id4 causes
the body to be controlled by the first qubit, but also must explicitly tensored with the remaining
qubits.

The combinator syntax also enforces a total ordering on the qubits, which may or may not be
desirable. If we had decided to create the GHZ state with successive CX gates, we would find that
there is no trivial way to apply such a 2-qubit gate to the first and third qubits.

Remark 6. Instead of introducing |+) and |-) as primitive patterns, we could have instead
introduced the Hadamard gate H as a primitive unitary, defining |[+) = H - |0) and |-) = H - |1).
Presenting the language in this way may be beneficial for contexts where the Hadamard gate is an
important or easy operation, as the definition of the Hadamard gate in Fig. 3 is more involved. The
set up taken above, however, allows an arguably more minimal presentation by having the phase
rotation be the only primitive unitary, and enables the exponentiation operation; it is unclear what
the square root of a primitive Hadamard operation should be, yet its definition is immediate when
presented as a single “if let” statement.

10 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

We end this section with one further illustrative example.

Example 7. Let XC = if let |-) ® |1) then Ph(), a controlled not operation where the second
qubit is the control qubit and the first is the target. We can then define concisely the swap gate as:

Swap := if let CX then XC

The unitary pattern CX acts on the body of the “if let” by conjugation, allowing us to recover
the more usual definition CX; XC; CX of the swap. By a simple manipulation, we can also recover
another definition of the swap gate:

if let CX - (|-) ® |1)) then Ph(x)

This presents an alternative way of understanding the action of this gate. By observing that
CX|-1) = \%(lOI) —|10)), we notice that the term above multiplies this component of the input

by —1, permuting the |[01) and [10) components.

4 Algorithms

Many well-known quantum algorithms can be expressed naturally in terms of conditional phases.
Below, we give implementations of several of the most prominent algorithms and prove their
correctness. We begin with Grover’s search algorithm, whose oracle and diffusion operators are
precisely conditional phases on the target subspace and the uniform subspace, respectively. Next,
quantum simulation algorithms are often based on finite-difference time-domain Hamiltonian
evolution. In these algorithms, we take a number of time-steps, in each of which the state advances
by applying conditional phases corresponding to the eigenspaces of the Hamiltonian. After that,
we show how the quantum Fourier transform (QFT) is naturally expressed as a sequence of condi-
tional phases. Finally, we present implementations of quantum signal processing and the quantum
eigenvalue transform, which implement functions of black-box unitaries by applying conditional
phases.

4.1 Grover’s Algorithm

The celebrated quantum database search algorithm of Grover [25] has a simple formulation in this
language. Assume we are searching a database X = {0,1,..., N — 1} of size N = 2" for elements
x on which a function f : X — {0, 1} takes the value 1. We may assume that f(x) = 1 at only a
single element 0 < w < N, as multiple marked elements can be handled by a sequence of such
oracles. Recall that the algorithm consists of three steps [46]:
(1) Preparation of a uniform superposition |s) = \/ﬁ Direx 1)
(2) Repeat [7VN/4] times:
(@) Apply the oracle operator Uy = Seex (DT xXx| =1 - 2 |wXw|.
(b) Apply the diffusion operator Us = 2 |s)s| — L.
(3) Measure the quantum state.
With high probability, the measurement result is |w).
The oracle operator Uy can be implemented by the following program:

if let |wo) ® - - - ® |wp—1) then Ph(r)

where o; is the j bit in the binary expansion of ®. Similarly, the diffusion operator U; is given by
the program Ph(r) ® idy;if let|[+) ® - - - ® |+) then Ph(;r). Compare these pieces of syntax with
the circuits in Figure 2. Grover’s algorithm is then simply an interleaving of these operators.

Quantum circuits are just a phase 11

4.2 Quantum Simulation

We will now implement the Trotter simulation algorithm [40] by applying a sequence of conditional
phases. This is perhaps not how computer scientists naturally think about quantum simulation, but
physicist practitioners naturally think in terms of dynamics as composing programs ‘spectrally’
and applying differential phases. This is completely independent from the mechanism of the if-let
construct, which we focus on. Once the Hamiltonian is decomposed into projections, we construct
a program that realises conditional phases on the subspace picked out by each projection.

Let H € B(H) be a positive self-adjoint operator on a 2”-dimensional Hilbert space. Then
there is a (possibly empty) decomposition H = ZIK:I Aill;, where each II; is a projection. Write
H= (A I1;))X | for the K-tuple of spectral components consisting of ordered pairs of eigenvalues
and projectors. Now, the decomposition above is not unique, so neither is H. In fact, it need
not be a spectral decomposition in the usual sense. We have two choices: impose uniqueness by
requiring that the II; be orthonormal, that the range of I1; coincides with the kernel of H — A;1,
that A; < --- < Ak; or, take H to be primary and H to be derived. Let us adopt the latter approach.

Now suppose we are given a set of patterns {p;}1<i<x. By possibly padding out the range of
the projection II; to power of two dimension, we may assume without loss of generality that
Fpi:qm; < qn, thatisIT; = lilj where 1 is the isometry represented by p;.

Then we define a program U (t) inductively, by

Up(t) :=id,
U((Aixni)),k:il (t) = |f Ietpk+1 then Ph(_Al+1t) ® ldml; U((Aisni))lk:l(t).

If the II; are mutually orthogonal, then Uy () represents the unitary e~ *#’. This does not hold in
general, for non-commuting projectors, but Uy (t/N)™ represents a unitary which converges to
e ! 35 N — oo by the well-known Trotterisation formula [55].

Let us now consider a simple concrete example of interacting spin-1/2 magnetic dipoles in an
external magnetic field B [51]. The Hamiltonian is

_ Hoy1y2h?

2
h N N
H = Hpee + Hing Hpree = _E JZ:; Yjoi - B Hiy, = 16713 (Gl + 02 — 3(1" ' 61)(r . 62))

where o; is the vector of Pauli operators on the 7™ spin, yj is the gyromagnetic moment of the
j™ spin, r is the displacement between the two spins, r = ||r||, and # = r/r. We can simplify this
expression to H = 010 ® [+ w2l ® 67 + J (6* ® 0* + 0¥ ® 0¥ — 267 ® 7). Not having imposed
uniqueness or even orthogonality on the decomposition H, we can work term-by-term. Writing
I =0X0] Tl =[1X1] Tl =[+X+[ok =[-X-| Iy =[iXil Ty =|-iX-il,
we obtain
H=w(Tly; —-;) ® (Il4z + ;) + wa(Tly, + ;) ® (14, —I1_;)

+J(H+x - fo) ® (H+x - fo) +](H+y - ny) ® (H+y - ny)

- 2](H+z - Hfz) ® (H+z - Hfz)-
Finally, we can distribute the tensor products over the sums, obtaining the decomposition H into

projectors. It remains to find the corresponding patterns. Recall that for each IT; we must find a
corresponding pattern p;. The following patterns p., p+y, p+- suffice:

pz=10) pz=I1) pux=1+) px=I|-) psy=S-1¥) p-y=S-|-)

These patterns allow us to compute a term representing e/, as required.

12 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

4.3 Quantum Fourier Transform

The quantum Fourier transform over Z/2"Z is the n-qubit unitary operator F;» such that (y| Fon |x) =
2720%Y, for 0 < x,y < 2", where o is a primitive 2" root of unity [46]. If x;x; . . . x, is the binary
expansion of 0 < x < 27, then

n
Fplxy @+ ®) =272 (R (10) + €22 1))
j=1
The textbook algorithm for implementing this operation consists of a sequence of controlled phases.
Define the dyadic rational phase gate R, := if let |1) then Ph(27/27). To define + QFT,, : qn < qn, the
term representing the n qubit quantum Fourier transform, we can leverage that chains of controlled
gates with the same control qubit can be replaced by a single control block. Using this we obtain
the following recursive definition:

QFT, = idg
QFT,.; =H®id,;if let|1) ® id, then Ry ® - - - ® R,4q;id; ® QFT,

In order recover the original quantum Fourier transform F», the order of the output qubits must
be inverted, which could be done with the addition of the appropriate Swap gates.

4.4 Quantum Signal Processing

Quantum signal processing (QSP) is a procedure that transforms a parametric single-qubit rotation
to modify its sensitivity to the parameter [41, 43]. Following [44], we write

_iex a iVl—a?
wia=e ‘lim a l

for the parametric unitary to which the user has black-box access (a rotation about the X-axis by
6 = —2 cos™! a). QSP makes a number of calls to W (a), as well as a number of phases, to implement
a modified unitary,

P(a) iQ(a)V1 —a?
iQ*(a)V1 — a? P*(a)

This is useful in, among other applications, quantum control of large ensembles of quantum systems
subject to inhomogeneous coherent control [8]. We regard a as the amplitude of a control field,
which due to spatial gradients couples more strongly to some elements of an ensemble than to
others. When the amplitude of the control field varies over an interval I = [ay, a;] within a sample,
we may choose P, Q such that W () is approximately constant. Dually, in sensing applications, we
may wish to enhance sensitivity to the parameter a.

There turns out to be a construction of a composite control sequence that implements any W
for any polynomials P (resp. Q) of degree d (resp. d — 1) and parity d mod 2 (resp. (d — 1) mod 2),
subject to the constraints imposed by unitarity of W, using d calls to W. All such W can be realised
as a product,

W(a) =

W(a) = W3(a) = S(¢0)W(@)S (1) -+ S(¢a-1) W (a)S (),
for some tuple gg € [0,27)%*!, where S(¢) = e'#Z.
As a single-qubit protocol, the translation to a program is easy. Define
R, (a) = Ph(—a/2) ® idy;if let|0) then Ph(«a)
Ry(@) = Ph(-a/2) ® idy;if let |+) then Ph(a).

Quantum circuits are just a phase 13

We then define a quantum signal processing program QSP(a; gi_;) inductively by

QSP(a; (¢o)) = Rz(2¢0)
QSP(a; (po, - - - Px» Pr+1)) = QSP(a; (do, . . ., x));
Ry(—2cos™"(@)); Rz (2x+1)

(recalling that (j_)) is by hypothesis of length > 1).

4.5 Quantum Eigenvalue Transform

QSP generalises rather dramatically to the quantum eigenvalue transform (QET) [42, 44]. Like QSP,
the QET applies a polynomial transform to an operator, but in this instance an operator on a
larger finite-dimensional quantum system, not merely a qubit. Still following the presentation and
conventions of [44], we proceed to an implementation of the QET.

We are given a Hamiltonian H acting on a finite-dimensional Hilbert space H = C?", and unitary
U acting on C?" such that U contains a copy of H in a block determined by a projector II, which is
also given to us. Then the QET produces a unitary U, such that (using the notation of [44]):

IT I

Ul 7{-] ﬁ:n[P(W)-]

where P(x) is some degree d polynomial function.
As an example, in the case where II = |0)X0|, we may take:

U=Z@H+X®VI-H? = Z R(1) ® [AXA|
Aeo(H)
where R(A) is the operator AZ + V1 — A2X qubit operator and A ranges over the eigenvalues of H
such that H = }}; A1 |AXA|.
The crux of QET is that there is a tuple ¢ = (¢4, . .., ¢§4) such that

U= ZZ H¢.2§_1U?H¢2kU d even
- -1)/2 +
g, U 1_[I(<=1 g Iy, U'ly,,, U dodd

where I1y is the “projector controlled phase shift” and is defined to be:
I, = (i$(20-1)
If we assume that the projector II is provided to us via a pattern + prr : qm < qn (such that pp

represents an isometry ¢ such that IT = u"), we can implement this projector controlled phase shift
as a single “if let™:

Rpp (¢) = Ph(=¢) ® id,;if let py; then Ph(2¢) ® id,,
If we further assume we are given a term sy : qn <> qn which represents the unitary U, then we
define QET (sy, pr1, ¢) inductively by:
QET (su, pui; () = idn
QET(su pri: (§1)) = sus Rpy (41)
QET(su, pris (¢, - - - Pe—1, $k)) = QET (s (o, - - -, Pr—2));
U3 Ron (81)3 333 Rpn (1)

Note that there are two base cases: one each for d even and d odd.

14 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

5 Compilation

In this section we will describe a conversion from the combinator language in Section 3 to a more
traditional quantum circuit representation of unitary programs. Our strategy for the compilation
will be to provide a normalisation algorithm, putting terms in a canonical “circuit-like” form. From
this form, a circuit representation can be trivially extracted. The circuit representation we compile
to here will consist of a fixed number of qubits (which can be referred to by index), a Hadamard
gate, and arbitrary multi-controlled phase gates (both zero- and one- controlled with arbitrary
angle). The problem of further compiling multi-qubit gates to a finite gate set is well studied [33, 36]
and outside the scope of this work.
We begin by defining this canonical form.

Definition 8 (Normal term). Let a simple pattern be one in the form:
41 ® - ®qn
where each g; is either idy, |0), |1), |+), or |—). Define a normal clause to be a term of the form:
if let ¢ then Ph(6) ® idg
where g is a simple pattern, and let a normal term be a sequential composition of such clauses.
Normal terms therefore take the following form:
if letq11 ® -+ ® g1 then Ph(60;) ®id;;- -« ;if let qe ® - - - ® gkn then Ph(6) ® id;,

where each g;; is either idy, |0), [1), |[+), or |—). A circuit can then be directly extracted from such
a form, with each “if let” statement being replaced by a multi-controlled phase, conjugated by
Hadamard gates on qubits that are plus-controlled or minus-controlled.

To massage terms into such a form, the following cases must be tackled:

e Tensor products of gates must be reduced to sequential compositions of “whiskered” gates,
where whiskering refers to taking a tensor product with the identity gate. As an example
Z ® Z could be reduced to Z ® idy;id; ® Z. The choice to avoid tensor products in our final
representation is motivated by tensor products not being stable under control—the control
of Z ® Z is not the tensor product of two CZ gates. In contrast, whiskering and sequential
composition are stable under control.

o “If let” statements of sequential compositions should be reduced to compositions of “if let”
statements.

e Patterns which are unitaries should be reduced to conjugation, for example the swap gate

if let(if let |-1) then Ph()) then if let |[1=) then Ph(s)
can be reduced to its more usual representation:
if let |[-1) then Ph(x);if let |1-) then Ph(x);if let |-1) then Ph(x)
o Nested “if let” statements can be combined into a single “if let” statement with a composed
pattern. For example, below the left term can be reduced to the right:
if let p then if let g thens ~~ if letp - g thens

Patterns are not necessarily in the form of a single unitary or a simple pattern, but the evaluation
reduces any arbitrary pattern p to the form s - g, where s is a unitary term and q is a simple pattern.
This allows normalisation to proceed by conjugating with the unitary s.

We evaluate terms in an evaluation context (q,1,r) : k — n, where + q : qm < qn is a simple
pattern, and , r € N such that [+ k + r = m. We motivate our evaluation context as follows: the
simple pattern g allows us to track that the term we are currently evaluating should be applied to a

Quantum circuits are just a phase 15

eval(‘;’l’r(s) =c evalz,l,r(t) =c

evaI;’,’r(Ph(G)) = [if let g then Ph(0) ® id;,] eval;,l,r(s; t)=cHc

Fs:qgk; < gk, Ft: gk, & gk eval;,lﬁkz(s) =c eval;,Hkl’r(t) =c

eval;’l,r (s®t)=cHc
evall, (p) =(c.q’) evaly, (s)=¢ x€{0,1,+,-}
evaI;’l’r(idk) =1] evalgsl’r(if let p thens) = c' 4 ¢ #c evalz’l,r(lx)) = ([Lqllx) /1)
evaI;,l’r (s)=c eValZ,Lr(Pl) =(c.q) eVa]Z,,l,r(PZ) =(c’.q")
evalsjl!r(s) = (C, q) evalz’l’r(pl . pz) = (C’ +c, q//)

Fp1:qj1 < qkg Fp2:qjz < qks ev:«,1l(’;’l’r+k2 (p1) = (c,q") evalz,!l*_jhr(pz) =(c,q")
evalg,l,r (p1®p2) =(c’ #¢,q")

Fig. 4. Rules for defining the evaluation functions. In each case we assume that (¢,[,r) : k — n.

certain subspace, and allows us to evaluate under an “if let” statement. The numbers [and r record
how many identities the term being evaluated has been whiskered with on either side.

e For a context (¢,1,r) : k — n and unitary term s : gk < gk, its evaluation evalgjl!r(s) is

alist [cy,...,cn] where each ¢; : qn <> qn is a normal clause. For such a list, its inverse
[er,....en]T = [cL, e, cf], where cj is the result of the inversion meta operation defined

in Section 3. We write c¢; # ¢, for the concatenation of lists ¢; and cs.

e For a context (q,,r) : k — n and a pattern p : qj < gk, its evaluation evalz’l,r (p) is a tuple
([e1,---5eN],q") where ¢’ : I + j + r — nis a simple pattern, and each ¢; : qn <> qnisa
normal clause.

For intuition, if eval(‘;’l’r(s) =[c1,...,¢cN], then cq;. .. ;cn should be equivalent to
if letg thenid; ® s ® id,
and if evalz,l’r (p) = ([c1, ..., en].q) then (c1;...;¢n) - ¢° should be equivalent to
q-(id®p®idy)
We make this intuition precise in Section 6.

Definition 9 (Substitution). Given a simple pattern q : qm < qn let g[|x) /i] be the result of
substituting the i id in q with |x). For example, if ¢ = |0) ® id ® id then g[|-) /0] =]0) ® |-) ® id.

The evaluation functions are now defined by induction using the rules in Fig. 4. The normal
term of s can then be extracted by composing the final list of clauses (taking the normal term to be
id, in the empty case, where n is the number of qubits of the input term).

We end the section by proving type soundness, which claims that our evaluation function
preserves typing judgements.

16 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Theorem 10 (Type soundness). Let (q,1,r) : k — n be an evaluation context. The following rules
are derivable:

Fs:qgk & gk evals’l’r(s) =[ey,...,eN] Fp:gm<qk evals,l)r(P) =([e1,...,enl ")

FCi;...5CN 1 QR <> Qn FCi;...5CN 1 QR <> Qn (¢, Lr)y:m—>n

Proor. The proof proceeds by simultaneously proving both rules, mutually inducting on terms
and patterns. o

6 Categorical Semantics

We now formalise the meaning of our combinator language by equipping it with categorical
semantics. Using this we will prove that the evaluation algorithm in Section 5 is valid in all models.

6.1 Dagger Categories

Except for measurement, quantum programming is intrinsically reversible, following the rules of
quantum mechanics. We capture this reversibility mathematically by providing, for each morphism
f: X — Y, an associated morphism f7: ¥ — X in the converse direction. Formally, a dagger
category is a category equipped with an identity-on-objects involutive contravariant functor
(=)": C°P — C, meaning that X' = X and (fg)" = ¢" .

Example 11. Here are some examples of relevant dagger categories for reversible programming.

The category with sets as objects and partial injective functions as morphisms is a dagger
category. We write PlInj for this category. The dagger of a function f is its partial inverse, as in the
following example morphism f: {0,1} — {0, 1}.

0 ifx=1
undefined otherwise

1 ifx=0 ¥
flx) = {undeﬁned otherwise fix) = {
This category represents what we refer to as classical reversibility.
The category Con of Hilbert spaces and contractive linear maps—i.e. maps with norm at most
1—is a dagger category where the dagger is the adjoint of linear maps. This category embodies pure
quantum operations: it contains both unitaries and isometries, and so can model pure quantum

states as well as programs.

Note that the dagger is not necessarily an inverse, but should rather be seen as a partial inverse.
This gives us the mathematical leverage to provide a semantics to “if let” (see next subsection). In a
dagger category, a morphism f is a dagger monomorphism (resp. epimorphism) if £ f = id (resp. if
ffT =id), and it is a dagger isomorphism if it is both dagger monic and epic [30].

Example 12. In PInj, the dagger monomorphisms are the totally defined injective functions, and
the dagger isomorphisms are the bijections. In Con, the dagger monomorphisms are the isometries
and the dagger isomorphisms are the unitaries.

Later in this section, we interpret the programs in our languages as dagger isomorphisms
(e.g. unitaries in a quantum setting), and patterns as dagger monomorphisms (e.g. isometries).

Definition 13 (Zero morphism). A category has zero morphisms if for all X, Y, there exists
Ox.y: X — Y such that OI(Y =0yx,andOxyo f =0xy =goOxy for f: X - X', g: Y —> Y.

Example 14. In PInj the zero morphism 0x y: X — Y is the function defined on no input. In Con,
it is the constantly zero linear map.

Quantum circuits are just a phase 17

A dagger preserving functor F: C — D between two dagger categories is such that F(f7) = F(f)T
for any morphism f in C. If (C, ®, I) is symmetric monoidal and ® is a dagger functor, we say that
that (C, ®,I) is dagger symmetric monoidal.

A dagger rig category is a dagger category equipped with symmetric monoidal structures (®, I)
and (@, 0), such that ® and @ are dagger functors, with their coherence isomorphisms, and with
additional natural dagger isomorphisms (satisfying coherence conditions [38]):

(XeV)®Z -5 (X®2)e(Y®Z), 080X — 0,
Z®(X0Y) 5 (ZeX)e(Z®Y), X®0 - O.

Example 15. The categories PInj and Con are dagger rig categories. The monoidal structures are
the usual ones for PInj: the product is the product of sets, its unit is a singleton, the sum is the
disjoint union of sets, and its unit is the empty set. In Con, the product is the tensor product, and
its unit is a one-dimensional Hilbert space. Its sum is the direct sum of spaces, and the unit is the
zero-dimensional Hilbert space {0}.

The rig structure plays a central part in our semantics. We later make sense of the subspaces
pointed out by patterns in the language with the @ tensor, through the notion of independent
coproducts (see Theorem 17). In this view, for example, X; and X are some subspaces of X; & X,. If
we interpret qubits as I @I, this means that the space generated by |0) (resp. |1)) are subspaces—and
they are not the only ones.

Now consider programs that act on the space (X; ® X;) ® Y. The rig structure allows us to
identify (X; @ X3) ® Y with (X; ® Y) @ (X; ® Y), which means that X; ® Y and X, ® Y are some
subspaces of (X; @ X;) ® Y. This identifies subspaces with patterns of the form p ® id,,.

We later prove that we can derive a dagger rig structure with independent coproducts (see
Theorem 17) that are preserved by the tensor product (see Theorem 22).

6.2 Independent Coproducts

Our syntax in Section 3 relies on the “if let” conditional, which is an instance of case splitting.
Case splitting in programming languages is usually interpreted with a disjointness structure [2].
For example, if the case splitting happens on a Boolean, the set of potential results is X; LI X3,
where X; happens when the Boolean is true, and X, when it is false. In category theory, we capture

this behaviour with coproducts, which are cospans: X; —1 X1+ X (L X, such that for all
fi: Xy = Yand f;: X; — Y, there is a unique mediating morphism m: X; + X; — Y such that the
diagram

X| S X+ X e X,

\ :m/ (1
fi + fe
Y

commutes, without any special conditions on f; and f;. In our setting, we also need to ensure our
program remains reversible and has a reversible semantics. In the particular case of case splitting,
this reversibility condition requires that we decide deterministically whether the result of type Y
through m came from the map f; or the map f>.

To do so, we introduce a notion of independence of morphisms, characterised by the condition
flT f> = 0 (see Definition 16), where f;r is thought of as the (partial) inverse of f;. This fits the notion
of compatibility of morphisms in classical reversible settings [34, Definition 8] and the one for
linear maps between Hilbert spaces [18, Section 2.3].

18 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Definition 16 (Independent cospan). In a dagger category with zero morphisms, an independent
cospan is a pair of morphisms (fi: X1 — Y, fo: Xz — Y) such that f;ffz =0.

Additionally, we introduce a universal equivalent to independent cospans. In the same vein as
coproducts, an independent coproduct is an independent cospan for which there exists a mediating
morphism with any other independent cospan. An independent coproduct is also jointly epic,
ensuring uniqueness of not only mediating morphisms, but of all morphisms that make the diagrams
such as (1) commute. This uniqueness is essential to prove that our programs are indeed interpreted
as dagger isomorphisms.

Definition 17 (Independent coproduct). An independent coproduct in a dagger category with zero
morphisms is a jointly epic independent cospan (i1: X; — X, 1: X, — X) such that i; and 1, are
dagger monomorphisms, and for all independent cospans (fi: X; — Y, f: X, — Y), there is a
unique morphism u: X — Y, making the following diagrams commute.

]

h
Xl) T \X/ T

7 S (Xz Xl
:u 3t lo fl
fi ~ fa
Y X - > X2 £ Y
1 2

Lemma 18. Let p be a morphism. If both (p, ¢) and (p, d) are independent coproducts, then cc’ = dd".
It also implies that that d'c is a dagger isomorphism. Therefore (p,c) and (p,d) are the same
independent coproduct up to dagger isomorphism.

Definition 19 (Independent coproducts). A category has independent coproducts if for all pairs of
objects Xj, X,, there exists an object X; @ X, and chosen morphisms 1;: X; — X; @ X, such that
(11, 12) is an independent coproduct. Given an independent cospan (fi, f2), its mediating morphism
with the chosen independent coproduct is written [fi, f2].

Theorem 20. IfC has independent coproducts and a zero object O, it is symmetric monoidal.

Example 21. Both PInj and Con have independent coproducts, given by their usual notion of
direct sum.

In our language, we also need to interpret the tensor product, which manifests as a monoidal
product. If this monoidal product is compatible with independent coproducts (as described below),
we obtain a dagger rig category.

Definition 22 (Preservation of independent coproducts). We say that (C, ®, I) preserves independent
coproducts if for all independent coproducts (i1, 12) and objects Y, then (1; ® idy, 1, ® idy) is also an
independent coproduct.

Theorem 23. If (C,®,1I) is a dagger symmetric monoidal category with a monoidal zero object O
(namely, equipped with dagger isomorphisms O ® X = O), and independent coproducts preserved by
the monoidal structure, then C is a dagger rig category.

Example 24. Our two examples PInj and Con have such a monoidal structure, and with independ-
ent coproducts, are rig categories under the conditions of Theorem 23. In fact, the category PInj is
the standard one to model classical reversible programming [12, 35]. It has many characteristics in
common with Con, as highlighted by their axioms [29]. However, Axiom (5) for Con shows that
‘mixture occurs’: there is a map I — I @I that is orthogonal to neither injection; physicists call this
‘superposition’. In this, we present Con as suitable for quantum computing, as opposed to PlInj.

Quantum circuits are just a phase 19

6.3 Semantics of “if let”
Let (C, ®,) be a dagger symmetric monoidal category with a monoidal zero object and independent

coproducts, equipped with a chosen, distinguished independent coproduct I S S T I <4<
and a family of scalars ¢g: I — I for 6 € R satisfying ¢g o por = dg+0’, ¢; = ¢_p and ¢, = id;.

Remark 25. We choose here to have a phase group parameterised by real numbers, helping for a
simpler presentation of both the syntax and its semantics. Note that the approach to phase can be
more refined, and we could parameterise with any group.

We provide a semantics of our language in the category C. We first fix the semantics for qubit
types as: [q0] = I, and [q(n+1)] = [qn] ® (I&I). Note that, due to the rig structure (see Theorem 23),
there is an isomorphism [q(n+m)] = [qn] ® [qm] for all n, m. In the rest of the section, we allow
ourselves to write “=” for coherence morphisms, to keep apparent only the key points of the
semantics. Both well-formed terms qn <> qn and patterns qn < qm are interpreted as morphisms
[qn] — [qn] and [gqn] — [qm], and we later prove that the interpretation of a term is a dagger
isomorphism, and the one of a pattern is dagger monic (see Theorem 27).

Remark 26. The data types used in the syntax are only qubits, and the semantics of a qubit data
is I @ I. While we keep this restriction, the content of this section is generalisable to any size of
data (for example qutrits, modelled as I ® I & I). This would, however, require a different syntax.

The full semantics of the language is detailed in Figure 5. The cornerstone of the language is the
“if let” expression, and the semantics of the other terms follow easily. Given a pattern+ p: qn < qm,

assume that [[F p: qn < qm] is part of an independent coproduct [qn] >_[L'p]]_> [qm] (L['p]]—< o . The
choice of [p]* does not matter, up to dagger isomorphism. With a unitary + s: qn < qn, we
have an independent cospan ([p][s], [p]*) whose mediating morphism with ([p], [p]*) is written
[[p][s]. [p]*] as shown below, which we let be the semantics of if let p then s: qm < qm.

lan] >—pr— [[qlm]] s lan] »—p7— ﬂqlm}] Ty
S. + S S. + 1 (2)
ORISR e h [[]]l [1eDEs1 1] d
e '
[am] [an] o [qm] < o

In other words, the dagger monomorphism [p] works as a subobject, on which [s] is applied. The
resulting [[p][s], [p]*] is the morphism that acts as [s] on the subobject identified as [p], and that
acts as the identity on its orthogonal subobject [p]*.

We prove, by induction on the typing derivations, that our semantics is well-defined. In particular,
we show that programs s are interpreted as dagger isomorphisms (meaning that [s]"[s] = id
and [s][s]" = id) and that patterns p are interpreted as dagger monomorphisms (meaning that
[p]"[p] = id). The well-definedness also heavily relies on the existence of an orthogonal morphism
to [p] for all p, in order to compute the “if let” statement as in (2).

Theorem 27. For any well-typed pattern p and unitary s, we have that:

e there exists a morphism [p]* such that ([p], [p]*) is an independent coproduct;
e the morphism [p]* is unique up to dagger isomorphism;

o the morphism [p] is a dagger monomorphism;

e the morphism [s] is a dagger isomorphism.

20 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

[Ph(6): q0 < q0] = ¢o
[+ idy: qn < qn] = idpgn
[Fs;t:qn e qn] =[F t: qn < gqn] o [F s: qn © qn]
[Fs®t: q(n+m) & q(n+m)] == o ([s: qn & qn] @ [t: qn & qn]) o =
[+ if letp thens: qm & qm] = [[p][s]. [p]*]

[F10):q0 <ql] =4 [F11):q0 <ql] =1,
[F14):q0 <ql] =r [Fl-):q0<ql] =r
[Fs:qn<qn] =[rs: qn < qn]
[-p-q: ql <qm] =[r p: qn < gm] o [F q: ql < qn]
[F p®q: q(n+n’) < q(m+m’)] == o ([r p: qn < gm] ® [+ q: qn’ < qm’]) o =

Fig. 5. Categorical semantics, defined by induction of the type derivation.

Note that given a well-typed pattern p, we can give a formula for [p]*, as follows:

0] =001 [=11 [3* =0
p-al = [l [P o= [p@al* == o [[p)* @ lgh. [[p] © 41" [p]* ® [4]*]] o =

in which our use of = contains only coherence morphisms [38] that are identities in after the
semi-strictification of rig categories (namely, all coherence morphisms except the multiplicative
symmetry and the right distributor).

Remark 28. The category Plnj is a (degenerate) model of the language. It has all the structure
required, with ¢y = idj for all 6, and r; = y; for i € {1, 2}. Naturally, the best model for our language
is Con, where patterns are interpreted as isometries, and programs as unitaries.

We showcase some equations that hold in any model of the language.

Proposition 29. Ifp and q are well-typed patterns, and s and t are well-typed terms, then we have:

e [if let p then if let g then s] = [[if letp - q thens];
o [if let p then (s;t)] = [if let p then s;if let p then ¢];
o [if lett then s] = [t][s][t]".

The categorical dagger agrees with the syntactic inverse (see Definition 2).

Proposition 30. Given a well-typed term s, we have that [s]" = [s'].

6.4 Soundness

We now show that any categorical model C is sound with respect to the evaluation function for the
compilation. We prove that the compilation procedure does not alter the semantics of the program.

Each normal clause c; already has a well-defined semantics (see Theorem 27), and we define
the semantics of a list of clauses [cy, ..., ¢;] as the composition [¢;] o - - - o [¢1]. In the following,
we allow ourselves to loosely write ¢ for a list of clauses, and [c] for its semantics in a categorical
model C. Since g designates the subspace on which the program is applied, we should have that if

Quantum circuits are just a phase 21

evaly; (s) =c, then [c] is the mediating morphism below:

[qm] >—[[¢'1]]—> [an] <—'MHT< .
£]

[q/] ® [qk] ® [ar]
id@[[p]]@idl Ic] id
[q/] ® [qk] ® [qr]

g v

—_—

[qm] al [qn] e

where &: [ql] ® [gk] ® [qr] — [gm] is the coherence isomorphism that rewrites one object into
the other, since we know that [+ k + r = m, but £ basically acts as the identity. Intuitively, we get
that the semantics of evalg,l,r(s) is equal to the one of the term: if let ¢ then (id; ® s ® id,).

[id;®s®id,]

In the case of evalz () = (¢, q'), the intuition is that the semantics of the pattern ¢ - ¢’ is equal
to the one of ¢ - (id; ® p ® id;); and their orthogonal morphisms are equal as well.

Lemma 31 (Induction hypothesis). We have the following:

o Ifeval(‘;’l’r(s) = ¢, then [c] is the mediating morphism in the diagram above; in other words,

the unique morphism such that:

{ [e]lq] = [q)é(id ® [s] ® id)¢"
lellql* = [a1*;

. ifevalz,l,r (p) = (¢, q'), then we have that: [c][q'] = [q]¢(id ® [p] ® id)&’".

Soundness is a direct corollary: we can conclude that the compilation scheme described by the
evaluation function does not alter the program.

Theorem 32 (Soundness). Given a well-formed unitary term s, we have [[s]| = [[eval:*dm,o’o ()]

7 Beyond Combinators

In this final section, we give two nominal variations of the language, exploring how the “if let”
construction could manifest in different contexts.

o A functional language: here we allow qubits to be bound to linear variables, and unitaries
are treated as functions which consume input qubits, producing new output qubits. This
allows a more concise syntax where a unitary can be applied to a subset of the available
qubits without inserting explicit identity unitaries. A consequence of this format is that
there arises a native implementation of the “swap” gate on two qubits, which in turn allows
swaps to appear within “if let” blocks.

e An imperative language: in the imperative model, variables are viewed as representing the
location of a qubit (i.e. their denotation is given by an inclusion into some ambient space)
instead of viewing variables as storing the state of a qubit at some fixed point in time. In
this model, variables need not be treated linearly, and unitaries are given by expressions
rather than functions, and are viewed as mutating the variables they act on, rather than
consuming them.

The following subsections briefly sketch these languages, exploring their differences to the core
combinator language.

22 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

7.1 Functional

In the functional variant, we introduce variables which intuitively store the quantum state at
intermediate stages of the program. Gates can then be explicitly applied to any specific qubits
available, rather than requiring them to be tensored with appropriate identity operations to apply
them to specific qubits.

With access to variables, the typing judgements must now be parameterised by a context. As
unitaries are no longer the primitive constructions, we remove the unitary type qn < qn, and
instead have the following typing judgement for terms:

T'ks:qgn

The context I' is a list x; : qny, x2 : qng, ... where the x; are variable names. We write - for the
empty context and I, A for the concatenation of contexts I' and A. As is usual in the literature, we
treat terms as equal up to a-equivalence.

Instead of the composition operator present in the combinator language, we now have a “let”
expression, allowing us to bind the (possibly multiple) outputs of a term. In general this will have
the form:

letx; ®---Qx, =sint
We refer to expressions of the form x; ® - - - ® x,, as copatterns, as they are also exactly the terms that
can be matched to a pattern in an “if let” statement. To make this precise, we specify three classes

of syntax: Copattern C Unitary C Pattern. All three syntax classes are generated inductively, from
the following grammars:

Copattern: ¢ i=x]|c;®cy

Unitary: s;t i=x|s®t|Ph(f) |letc=sint|ifletp =cthens

Pattern: p.q i==x|p®q|Ph(f)|letc=ping|ifletp=cthens|]0)]|[|1)]|][|+)]]-)
where x represents a variable.

Within this syntax, we treat variables linearly, which corresponds to the deletion and copying of
qubits being forbidden. This is reflected in the typing rules for terms, found below.

X:qnkx:qn -+ 0) : q1 “F 1) :ql -k [+):ql -k |-):ql
IF'kts:qn Avrt:qm OFs:qm Avrc:qm ILAvrt:qn
I[LAFs®t:q(n+m) -+ Ph(0) : q0 [LOFletc=sint:qn

Arc:qgm OFrp:qm OFs:qn

Arifletp =cthens:qm
With the above typing rules the term
letx’ ® z" = (if let|1) ® |-) =x ® zthen Ph(x)) inx' @ y ® 2’

in the context x : ql,y : ql,z : q1, which applies a CX gate to the first and third qubits, is not
well-typed, as it uses variables “in the wrong order”. To remedy this, the following exchange rule
can be added.

Ix:qny:qmAFs:ql

Iy:qmx:qnAFs:ql

Quantum circuits are just a phase 23

Introducing this exchange rule has an unintended side effect; swaps (and therefore their controlled
variants) are now natively representable within the language. For example:
x:qliy:qliz:qlriflet|])®y ® 2z =x®y@zthenz ®y : q3

Performs a swap of y and z, controlled on x.

In the term above, we were required to “rebind” y and z to y’” and 2’, as this functional variant
does not allow “variable capture”: the use of variables in the body of the “if let” which were defined
outside the pattern. In principle, the typing rules could be modified to allow this, however doing
so creates ambiguity in the semantics, as it can be unclear whether swaps occur inside the “if let”
block (possibly being controlled) as opposed to happening before.

7.2 Semantics of the Functional Language

Let (C, ®,I) be a dagger symmetric monoidal category with a zero object (such that O ® X = O for
all X) and independent coproducts, equipped with a chosen, distinguished independent coproduct

I>H>T@l<%<Ianda family of scalars ¢p: I — I for 0 € R satisfying ¢g o por = do+0',
¢y = ¢-0 and ¢ = idy.

The semantics of a judgement I + p: qn is given as a morphism [I' + p: qn]: [T] — [qn] where
[T] = [qu] ® --- ® [qng] for T = x;: qny, ..., xk: qng. Note that given the latter T, there is a
canonical copattern cr =x; ® - - - ® xy, such that I' F cr: q(ny+ ... +ng).

We define the following semantics:

[x: qn+ x: qn] = idpge
[-+1]0y:ql] =u [FI)y:ql] =1
[FI+):ql]=n [FI1=):qi] =r
[- - Ph(6): q0] = o
[T, Ars®t:q(n+m)]=[Trs:qn] @ [A+ t: qm]
[[,O+ letc=sint:qn] =[[,A+t:qn]o (id[[r]] ® ([[A Fe:gqm] o[®Fs: qmﬂ))
[Ar+ifletp =cthens: qm] =uo A+ c: qm]

where u is the mediating morphism in:

id (3)

We expect to have the following results, with a similar proof as for Theorem 27.

e If we have I' + p: qn with p a pattern, then [T + p: qn] is an isometry.
e If we have I' ¢: qn with c¢ a unitary, then [T F ¢: qn] is a unitary.

7.3 Imperative

The final version of the syntax is an imperative syntax. By exploiting that unitaries always return
the same number of qubits as they are input, we can instead view a unitary as a procedure that
mutates its input qubits, and has no return value.

24 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

In this syntax, quantum computation is effectful. Under this view, our qubit variables now act as
qubit “locations” rather than qubit states, and can be freely copied or unused, allowing the linearity
condition to be dropped. We note that in this syntax, copying a variable is more akin to creating an
alias, rather than duplicating a qubit state (which cannot be done by the no-cloning theorem).

Removing the need for return values comes with various advantages:

e The overall syntax becomes more concise.

e It is no longer possible to natively represent swaps as in the functional variant, yet we do
not have a rigid qubit order as in the combinator variant.

e It is much easier to give a typing rule to the “if let” clause which allows “variable capture”,
the use of variables defined outside the pattern.

To demonstrate the last point, we consider the following program:
x:qlLy:qlr (if let|1) =y then X[x]); H[x]

We are free here to use the variable x in the body of the “if let” clause, despite it not appearing in the
pattern |1). Contrary to the functional variation of the syntax, the variable x is not treated linearly,
and so we are free to continue using x after the “if let” clause. We also note that this program can
be viewed as using the variables x and y “in the wrong order”. The translation of this program into
the functional syntax would require multiple uses of the exchange typing rule, yet in this syntax
the program can be naturally interpreted without any swap gates.

A disadvantage of the imperative approach is its treatment of patterns. Patterns naturally have a
more functional treatment, causing the resulting language to contain functional and imperative
components. For example, in the pattern H - |0), the term H acts as a function which outputs a
pattern, whereas in the expression H[x], the term H acts on a qubit x which it is then viewed as
mutating, returning nothing. To remedy this, we add a sort of gates, which bind the free variables
in a unitary, and allow them to be embedded into a pattern.

The syntax for this language has the following grammar, where I is a context and x is a variable:

Copattern: ¢ ==x|c¢;®c;

Pattern: p.q z=x|p@qlg-p|[0)[11)[1+) 1)
Unitary: s,t u=1id | s;t | Ph(0) | if letp = cthens
Gate: g =TI'ts

As in the functional syntax, Copattern C Pattern, but here the syntax for unitaries is separated.
We type this language with three judgements, one for pattern and copattern terms, one for
unitary terms, and one for gates.

F'tp:qn I'ks Fg:qn e qn

The typing rules for patterns and copatterns are:

IF'ks:qgn Avrt:qm Fg:qn < qn F'tp:qn
X:qnkx:qn I[Ars®t:q(n+m) F'rtg-p:qn
-+ 10) : q1 “F|1):ql “F|+):ql “F|-):ql

The typing rules for unitaries being:

T'ks 'kt Avrc:qm OFp:qm Iers
I't+id TFs;t I' + Ph(0) I[LAvifletp =cthens

Quantum circuits are just a phase 25

Lastly, the unique typing rule for gates is the following, where #I" is the number obtained by
summing the indices of each type in I':

T'ks #'=n

tFl—>s:qneqn

In addition, we allow typing rules which permute the context, much like in the functional version
of the syntax, though note that due to the lack of return values in this syntax, there is no way to
create a “native” controlled swap, (i.e. without inserting a swap gate using quantum operations).

We further note that the typing rule here for the “if let” expression allows variable capture,
without any of the complications that arised in the functional syntax.

8 Future Work

We conclude by discussing some future directions for the development of languages using the
constructs introduced in this work. An immediate direction is to extend the compilation and
denotational semantics to the functional and imperative variants of the language presented in
Section 7.

In this paper we have focussed on using the “if let” construction as a device for writing quantum
programs, yet it could also find use as a representation of quantum programs within an optimising
compiler. At this higher level of abstraction than quantum circuits, more global optimisations be-
come apparent. Section 5 already contains one instance of this, simplifying a conjugation appearing
in a controlled block.

Additionally, a study of more comprehensive equational systems on our language could extend
the semantic equivalences between terms presented in Section 6. This could take the form of a
complete representation of equality between quantum programs (as has been done for quantum
circuits [14]), or aim to characterise an equality relation which may not be complete (with respect
to the semantics in unitary matrices) but could exhibit an efficient normalisation function, with
potential applications for optimisation.

Finally, the language presented here describes programs which are purely quantum, with no
classical components, omitting even allocation and measurement. A more fully-featured quantum
programming language based on the “if let” construction requires the addition of these operations.
In contrast to naively extending the language, these operations can reuse parts of the pattern
infrastructure, with measurement bases specified by patterns, and patterns specified by subprograms
with allocation but without measurement.

References

[1] L. M. Ahearn. Living language: an introduction to linguistic anthropology. Wiley, 2012.

[2] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evaluation for typed lambda calculus with
coproducts. In Proceedings 16th Annual IEEE Symposium on Logic in Computer Science, pages 303-310, 2001.

[3] T. Altenkirch and J. Grattage. A functional quantum programming language. In Logic in Computer Science, pages
249-258. IEEE, 2005.

[4] P. Andres-Martinez and C. Heunen. Weakly measured while loops: peeking at quantum states. Quantum Science and
Technology, 7:025007, 2022.

[5] B.Bichsel, M. Baader, T. Gehr, and M. Vechev. Silq: A high-level quantum language with safe uncomputation and
intuitive semantics. In Programming Language Design and Implementation, pages 286—-300. ACM, 2020.

[6] A.Bisio, M. Dall’Arno, and P. Perinotti. Quantum conditional operations. Physical Review A, 94:022340, 2016.

[7] N.Bot6 and F. Forslund. The zeta calculus. arXiv:2303.17399, 2023.

[8] K.R. Brown, A. W. Harrow, and I. L. Chuang. Arbitrarily accurate composite pulse sequences. Physical Review
A—Atomic, Molecular, and Optical Physics, 70(5):052318, 2004.

[9] C.Badescu and P. Panangaden. Quantum alternation: prospects and problems. In Quantum Physics and Logic, volume
195 of Electronic Proceedings in Theoretical Computer Science, pages 33-42, 2015.

26

[10]
[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]
[33]

[34]

[35]

[36]

[37]
[38]

[39]

Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

J. Carette, C. Heunen, R. Kaarsgaard, and A. Sabry. With a few square roots, quantum computing is as easy as Pi. In
ACM Principles of Programming Languages, volume 8, pages 546-574, 2024.

K. Chardonnet. Towards a Curry-Howard Correspondence for Quantum Computation. PhD thesis, Université Paris-Saclay,
January 2023.

K. Chardonnet, L. Lemonnier, and B. Valiron. Semantics for a Turing-Complete Reversible Programming Language with
Inductive Types. In Formal Structures for Computation and Deduction (FSCD 2024), volume 299 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 19:1-19:19, 2024.

G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron. Quantum computations without definite causal structure.
Physical Review A, 88:022318, 2013.

A. Clément, N. Heurtel, S. Mansfield, S. Perdrix, and B. Valiron. A complete equational theory for quantum circuits. In
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-13, 2023.

B. Coecke and R. Duncan. Interacting quantum observables. In International Colloquium on Automata, Languages and
Programming (ICALP), volume 5126 of Lecture Notes in Computer Science, pages 298-310. Springer, 2008.

McKinsey & Company. Quantum technology monitor. Digital, April 2024.

A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L. S. Bishop, S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin,
and J. M. Gambetta. Openqasm 3: A broader and deeper quantum assembly language. ACM Transactions on Quantum
Computing, 3(3):1-50, 2022.

K. Dave, L. Lemonnier, R. Péchoux, and V. Zamdzhiev. Combining quantum and classical control: syntax, semantics
and adequacy. In Foundations of Software Science and Computation Structures, pages 155-175. Springer, 2025.

N. de Beaudrap, A. Kissinger, and J. van de Wetering. Circuit Extraction for ZX-Diagrams Can Be #P-Hard. In
International Colloguium on Automata, Languages, and Programming (ICALP), volume 229 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 119:1-119:19, 2022.

M. Di Meglio. Pre-hilbert *-categories: the Hilbert-space analogue of abelian categories. arXiv:2313.02883, 2023.

A. Diaz-Caro. Towards a computational quantum logic. In Crossroads of Computability and Logic: Insights, Inspirations,
and Innovations, pages 34-46. Springer, 2025.

C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe. Complete 3-qubit Grover search on a
programmable quantum computer. Nature Communications, 8:1918, 2017.

P. Fu, K. Kishida, N. J. Ross, and P. Selinger. Proto-quipper with dynamic lifting. Proc. ACM Program. Lang., 7(POPL),
January 2023.

P. Fu, K. Kishida, N. J. Ross, and P. Selinger. Proto-Quipper with Reversing and Control, October 2024.

L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, STOC *96, page 212-219, 1996.

B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, M. Troyer, and K. Svore. Quantum programming
languages. Nature Reviews Physics, 2:709-722, 2020.

C. Heunen and R. Kaarsgaard. Quantum information effects. Proc. ACM Program. Lang., 6(POPL), January 2022.

C. Heunen and A. Kornell. Axioms for the category of hilbert spaces. Proceedings of the National Academy of Sciences,
119(9):e2117024119, 2022.

C. Heunen, A. Kornell, and N. van der Schaaf. Axioms for the category of hilbert spaces and linear contractions.
Bulletin of the London Mathematical Society, 56(4):1532-1549, 2024.

C. Heunen and J. Vicary. Categories for Quantum Theory: an introduction. Oxford University Press, 2019.

K. Hirata and C. Heunen. Qurts: Automatic quantum uncomputation by affine types with lifetime. In Proceedings of
the ACM on Programming Languages, volume 9, pages 155-182, 2025.

H. H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70-80, 2012.

K. Huang and J. Palsberg. Compiling conditional quantum gates without using helper qubits. Proc. ACM Program.
Lang., 8(PLDI), June 2024.

R. Kaarsgaard, H. B. Axelsen, and R. Gliick. Join inverse categories and reversible recursion. . Log. Algebraic Methods
Program., 87:33-50, 2017.

R. Kaarsgaard and M. Rennela. Join inverse rig categories for reversible functional programming, and beyond. In
Mathematical Foundations of Programming Semantics (MFPS), volume 351 of Electronic Proceedings in Theoretical
Computer Science, pages 152-167, 2021.

T. Khattar and C. Gidney. Rise of conditionally clean ancillae for efficient quantum circuit constructions. Quantum,
9:1752, May 2025.

S. Klabnik and C. Nichols. The Rust programming language. No Starch Press, 2023.

M. L. Laplaza. Coherence for distributivity. In Coherence in Categories, pages 29-65, Berlin, Heidelberg, 1972. Springer
Berlin Heidelberg.

L. Lemonnier. The Semantics of Effects: Centrality, Quantum Control and Reversible Recursion. PhD thesis, Université
Paris-Saclay, June 2024.

Quantum circuits are just a phase 27

[40]
[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]

[54]

[55]
[56]

[57]
[58]

S. Lloyd. Universal quantum simulators. Science, 273(5278):1073-1078, 1996.

G. H. Low and I. L. Chuang. Optimal hamiltonian simulation by quantum signal processing. Physical review letters,
118(1):010501, 2017.

G. H. Low and Y. Su. Quantum eigenvalue processing. In Foundations of Computer Science (FOCS), pages 1051-1062.
IEEE, 2024.

G. H. Low, T. J. Yoder, and I. L. Chuang. Methodology of resonant equiangular composite quantum gates. Physical
Review X, 6(4):041067, 2016.

J. M. Martyn, Z. M. Rossi, A. K. Tan, and L. L. Chuang. Grand unification of quantum algorithms. PRX Quantum,
2:040203, 2021.

M. Di Meglio, C. Heunen, J-S. P. Lemay, P. Perrone, and D. Stein. Dagger categories of relations: the equivalence of
dilatory dagger categories and epi-regular independence categories. arXiv:2508.01146, 2025.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge university press, 10th
anniversary edition edition, 2010.

M. Pagani, P. Selinger, and B. Valiron. Applying quantitative semantics to higher-order quantum computing. In
Principles of Programming Languages, page 647-658. ACM, 2014.

L. M. Procopio, A. Moqanaki, M. Aratjo, F. Costa, I. A. Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, C. Brukner,
and P. Walther. Experimental superposition of orders of quantum gates. Nature Communications, 6(1):7913, 2015.

A. Rice. Phase-rs - rust implementation of quantum phase language. Zenodo, October 2025.

A. Sabry, B. Valiron, and J. K. Vizzotto. From symmetric pattern-matching to quantum control. In Foundations of
Software Science and Computation Structures, volume 10803 of Lecture Notes in Computer Science, pages 348-364.
Springer, 2018.

J.J. Sakurai and J. Napolitano. Modern quantum mechanics. Cambridge University Press, 2020.

P. Selinger. Towards a semantics for higher-order quantum computation. In Quantum Physics and Logic, pages 127-143,
2004.

K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure and value of modularity in software design. ACM
SIGSOFT Software Engineering, 26(5):99-108, 2001.

K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler.
Q#: Enabling scalable quantum computing and development with a high-level dsl. In Proceedings of the Real World
Domain Specific Languages Workshop, 2018.

H. F. Trotter. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4):545—
551, 1959.

B. Valiron. Semantics of quantum programming languages: Classical control, quantum control. Journal of Logical and
Algebraic Methods in Programming, 128:100790, 2022.

B. Valiron. On Quantum Programming Languages. HDR, Université Paris Saclay, September 2024.

B. Valiron, N. J. Ross, P. Selinger, D. Scott Alexander, and J. M. Smith. Programming the quantum future. Communications
of the ACM, 58(8):52—61, 2015.

F. Voichick, L. Li, R. Rand, and M. Hicks. Qunity: A unified language for quantum and classical computing. Proc. ACM
Program. Lang., 7(POPL), January 2023.

W. Wootters and W. Zurek. A single quantum cannot be cloned. Nature, 299(5886):802-803, 1982.

N. S. Yanofsky. Monoidal Categories: Unifying Concepts in Mathematics, Physics, and Computing. MIT Press, 2024.

N. S. Yanofsky and M. Mannucci. Quantum Computing for Computer Scientists. Cambridge University Press, 2008.
D. Yau. Bimonoidal Categories, E,-Monoidal Categories, and Algebraic K-Theory: Volume I: Symmetric Bimonoidal
Categories and Monoidal Bicategories, volume 283 of Mathematical Surveys and Monographs. AMS, 2024.

M. Ying. Foundations of quantum programming. Morgan Kaufmann, 2016.

M. Ying and Z. Zhang. Quantum recursive programming with quantum case statements. arXiv:2311.01725, 2023.

Z. Zhang and M. Ying. Quantum register machine: Efficient implementation of quantum recursive programs. In
Proceedings of the ACM on Programming Languages, volume 9, pages 822-847, 2024.

Proof of Type-Soundness

As stated in the main body, we prove Theorem 10 by mutually inducting on terms and patterns.
We assume throughout that (g, 1, r) : k — n is a (valid) evaluation context, with - q : gm < qn and
l+k+r=m.

o Case Ph(6): In this case k = 0 and so [+ r = m. Therefore, Ph(0) ® idj,, : gm < qm, and
so by the typing rule for “if let” we are done.

28

Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Case s; t: Follows immediately from inductive hypothesis and the typing rule for composi-
tion.

Case s ® t: By assumption, there are ki, k; such that k; + k; =k and + s : gky <> gk; and
F t: gk2 & qgkg. Therefore, (q,I,r + k) : k1 = nand (g, + k1,7) : ko — n are evaluation
contexts. By inductive hypothesis, the evaluations of s and ¢ both have type qn < qn, and
so can be composed.

e Case idg: By convention, the resulting normal term is id,, which has type qn < qn.
o Case if let p then s: By the typing rule for “if let”, we must have v p : qj < gk and

Fs:qj < qj. Ifevalz,l,r(p) = ([c1,...,cn], ¢’), then by inductive hypothesis for patterns we

oGt

have that + ¢1;...;¢cn 1 qn <> gn (and also F €556 1 qn & qn) and that (¢’,L,r) : j > n
is a valid evaluation context. Letting eval(‘;, (8 =1[cp,..., c;,], by inductive hypothesis for
terms we obtain + cj;...;c}, : qn < qn. Therefore:

F c;;...; f;c;;...;c;,;cl;...;cl iqn © qn

follows from the typing rule for composition.

Case |x): Again by convention, the composition of the empty list is id,,, which is trivially
well-typed. It remains to show that (q[|x) /f(0)],I,r) : 0 — n is an evaluation context,
which requires [+ r = m — 1, but by hypothesis we have [+ 1+ r =m.

Case s: Follows directly from the inductive hypothesis for terms.

Case p; - pa: Suppose + p; : qj < gk and + p; : qi < qj. Let evalz’f(pl) =([c1,...,enl.).
Then by inductive hypothesis we have that (¢’,1,7) : j — n is an evaluation context, and
Fep...sen i qn e gn If evals,,l,r (p2) = ([c], ..., e 1, g"”), then by inductive hypothesis
we have (¢”,L,r) : i » nand+ cf;... ;c;\], : qn < qn, and so we are done by the typing
rule for compositions.

Case p; ® py: By assumption F p; : qj; < gky and p; : qj2 < qk; such that k; + k, = k.
Then I + k; + k; + r = m and so we have that (g, I,r + k) : ky — n is an evaluation context.
If eval{’;l,ﬂrk2 (p1) = ([e1s .- -5 eN], q'), then by inductive hypothesis, + ¢1;...;cn : qn <> qn
and (¢’,I,r + k2) : j1 — nis an evaluation context. This implies that + ¢’ : qm’ < qn and
I+ ji+7r+k; =m’, and hence (¢,1 + ji,r) : ko — n is also an evaluation context. Letting
evalz,’lﬂbr (p2) = ([c},....c)v1.q”), by a second application of inductive hypothesis we
have + cj;.. .;c}\], :qn & qnand (q”,1 + ji,r) : j» — nis an evaluation context. By the
typing rule for compositions we have:

’ ’
I—cl;...;cN,;cl;...;cN:qn<—>qn

and since (q”,1 + ji,r) : jo — n, we have that (¢”,,r) : j; + j» — nis also an evaluation
context, as required.

B Proofs of Section 6

Lemma 33. Ifan independent cospan (fi, f2) is made up of dagger monomorphisms, then the mediating

morphism u obtained from an independent coproduct (iy, i) is also dagger monic.

Proor. In this proof, we use the fact that an independent coproduct is jointly epic in two ways.
If we have that (iy, i2) is jointly epic, it means that

gil = hll

gis = hiy ° then g = h;

if we have {

Quantum circuits are just a phase 29
since we have a dagger category, the following holds:

if we have {.g =ik ,theng =H'.

-
1
iy =igh'

We can combine the two: if both (i, i2) and (f/, ;) are jointly epic, it means that

zi af; = i,hf]
nafy =ithsy " Lofi = bt
1,9f; = ihfy
we call this double joint epicness.
The following holds.

if we have ,then g = h;

We conclude by double joint epicness that u'u = 1d, which is the definition of dagger monic. O

Proor or LEMMmA 18. The following holds.

plec p =0=pidd'p
plecfe=0=pTdd'c
dicc'p=0=d'dd’p
diec’c =dfe =dfdd'c
We conclude by double joint epicness. O

Lemma 34. In a category with independent coproducts, if (f, g) is an independent cospan and h is a
dagger monomorphism, then

ho [f,g] = [hf, hg]
Proo¥. The pair (hf, hg) is indeed an independent cospan since (hf)"hg = fTh'hg = fig = 0.

Additionally, h[f, g] is a mediating morphism, therefore we conclude by uniqueness. O

B.1 Proof of Theorem 20
Let C be a dagger category with a zero object and independent coproduct (meaning, a universal
cospan of dagger monomorphisms that are jointly epic). Fix an independent coproduct

AL AeB <L B

for each pair of objects A and B of C. We will prove that (C, ®, O) is a dagger symmetric monoidal
category.

Proposition 35. There is a dagger functor ®: C X C — C.

ProoF. Let f: A — A’ and g: B — B’ be morphisms. Define f @ g: A® B — A’ @ B’ to be the
unique morphism satisfying (f @ g9)ia = 14 f and (f @ g)1p = ip'g. The uniqueness immediately
shows that 14 @ 15 = 14p. Let f': A” — A” and g: B — B’ be additional morphisms. It again
follows directly from the uniqueness property that (f' @ ¢')(f & g) = (f'f) & (¢'g).

30 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Additionally, we have:
tL(fT GBgT)tA/ = lj;\lAfT :fT =le;,LA/
= () = (fO 9w =1} (f@g) iu
T(fT @gT)LB/ = tAth =0= leA,lB/
= (wf)iy = (f @) 'ip =\ (f @ 9) 1w
T(fT GBgT)tA/ = tBtAfT =0= g lB,lA/
= (5g) 1 = (f® 91p) 1w = 1y(f @ 9) 1
(@ g = isg" =" = g'i s
= (w9) 1 = (F@ Q)15 = 15 (f © 9) "1y
by double joint epicness, (f @ g)" = fT @ g'. O
Lemma 36. There are natural dagger isomorphisms Aa: O® A — Aandpa: A® O — A.

Proor. Write (O @ A, 0,1) for the chosen independent coproduct of 0 and A. Since (A4, 0,id) is
another cospan of 0 and A, there is a unique dagger monomorphism (see Lemma 33) 14: O®A — A
satisfying At = id. Now A = Au' =7, s0 171 = &1 = id. Therefore A = (' is a dagger isomorphism.

O ———— 004 ;ﬁ A
| A
idl idef lf
o) 0 o¢ Br—"—p
— 09 —
If f: A — B, then by definition (id &)14 = tgf. Therefore
Ag(id @ f) = Ap(id ® f)1ada = ApigfAa = fAa.
Thus A is natural. The proof for p is similar. O

Lemma 37. There are natural dagger isomorphisms cap: A® B — B ® A satisfying cpacap = 1.

Proor. If (A @ B, iy, iz) and (B & A, jy, j») are the chosen independent coproducts, then (B &
A, jo, j1) is an independent cospan as well, so there is a unique dagger monomorphism (see
Lemma 33) oap: A® B — B ® A satisfying j, = oi; and j; = oiy. It follows from uniqueness of
mediating morphisms between independent coproducts that o 404 5 = id.

A//_id\f‘A
N AN A

AGBB UAB—) B@A
f f@g 9 ge)f f
A’ GB B’ UA' g —> B’ @A'

7 N T N
\m—/

;>/
> <

Quantum circuits are just a phase 31

If we have f: A — A’ and g: B — B’, and we write (A’ @ B’,i},i;) and (B’ @ A’, j;, j;) for the
chosen independent coproducts, then

(9® foapii =(9® f)j = jof =owpilf =oap(f @9
(9@ floapia =(9® f)j1 = j1g = oapisg =oap (f & g,

It now follows from joint epicness of (i1, i2) that (¢ ® f)oap = op 4 (f ® g). Thus o is natural. O

Lemma 38. There are natural dagger isomorphisms aspc: A® (B&C) - (A@B)&CC.

Proor. Write (B& C, ji, j2), (A® (B® C), i1, iz), (A® B, i},i}), and ((A® B) & C, ji, j;) for the
chosen independent coproducts. Because (A @ (B @ C), i, i5j1) is an independent cospan of A and
B, there is a unique dagger monomorphism m: A® B — A ® (B ® C) satisfying mij = i; and
mi,, = iy ji. Similarly, there is a unique dagger monomorphism fspc: (A®B)®C — A® (B® C)
satisfying fj; = m and fj; = izj,. In the same way, there are unique dagger monomorphisms
n:BeC — (A®B)®Canda: A® (B®C) — (A®B) & C satisfying nj, = jliy, nj2 = j;, aiy = jii
and ai; = n. Now

ﬂai1 = ﬁ]{l; = ml; = i1,
Paizji = pnjy = Bjiiy = miy = iyjy,
Paizjo = Pnjs = Pjy = izjo.

since (1, j) is jointly epic, the second and third line about give fai; = i; and because (iy, iz) is
jointly epic, we have fa = id. It follows that a' = Baa’ = f, and that « is dagger isomorphism.

32

Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

A B C
J2
i
$ BaC
I\
iy I\
Y
A® (BaC) o
A\ (I~ -« : \
id I ~~1T--_ o id
A =TI oo
mo\ (AGBB)EBlc
b jr/ ! Neeh
| \ 1 / jé
/
nSul [
/ ! |
e i / i ' !
B (fogioh 1
1

|

|
|
|
|
|
I
I

A A "

I
]
]
! |
A ' ®(goh B l
| ! (Ig : ~ ., ! [
| / U ! /
I / \$ \=
V7| I ’ ’
b / ‘B C
! / iy
/ \
f G? N ‘\
Ave (B e () Y
\
LA Te— Y
id \ | a \ id
v ~-- Y
\
\om’ AeB)s
1
N /
\ I 1’
oy —
i;ll ié//
~ ~
A B’ c’

Let f: A— A’,g: B— B’,and h: C — C’ be morphisms, and write the chosen independent

coproducts of A’, B’, and C’ as above. Then
(feg ®haii=((feg) ®@mnji=((f®g) ®h)jiiy=j" (f®qg)i,=j"iy’g
=ad'iy(geh)j=a (f ® (9 h))izj,

RN 7 S RV Y]
—Olmlz g—alzjlg

(feg @ehai,=((feg) @hnj,=((feg) ®h)j;=j"h
=d'iy (g®h)jo =’ (f & (9@ h))izjo.

— a/ l;/]é/

Because (i, j2) is jointly epic, it implies that
(f@®g) @hai =a (f & (g h))ia.
Additionally

(feg ehai=((feg ®hji=j"(fegi=j"if
=a'm'il"f=d'i{f = (f ® (g ® h))is.

Since (i, i) is jointly epic, it implies that ((f®g) ®h)a = o’ (f ® (9 ® h)). That is, « is natural.

Quantum circuits are just a phase 33
J P

Note that, since C is a dagger category, independent coproduct are actually independent biproducts.
Indeed, let (i1, i) be an independent coproduct and (fj, f2) be a span this time:

Acl oty p

We know that there is a unique u such that the following diagram commutes:

A—" v ApBe 2 B

NN

which implies that u" is the unique morphism such that the following diagram commutes:

O 4=

if i
A< A®B > B
0
.
A i f
C

thus making (i, i,) an independent product. In other words, the description of an independent
coproduct is equivalent to a description of an independent product.

4
rh

Proposition 39. If C is a dagger category, then any choice of zero object O and independent
(co)products A ® B makes C into a dagger symmetric monoidal category.

Proor. Combine Theorems 35 to 38 with the following. Write pQ’B : A®B — Aand pg’B : A®B —
B for the chosen independent products. The triangle, pentagon, and hexagon equations can be
proven algebraically exactly as in the case of cartesian categories [61, Example 5.3.6]. We show the
triangle equation as an example.

A O B

AO08B

O®B
A® (0@ B)
id i\\\ \“‘J\\\\\\} id
mt o\ (A®O)oB
\ / /
N RN
O H\/ / pg®o’3

yi
N

b

R
P
\ ’k
&
O ® -
"%
Y
:Lk’/
®
SRNE
\/((

AB
Py

S
[+~]

34 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

In the above diagram:

Pyl (p@id)a = pphogta = pm = py O = pif(id @ 2),
pg’B (p@id)a = pg@o’Ba = Ap’g’gg’B = p5®8(id ® A).
By the universal property of A @ B, therefore (p @ id)a =id & A. O

B.2 Proof of Theorem 23

Let (C,®,I) be a dagger symmetric monoidal category with a zero object O, such that there is a
dagger isomorphism O ® A = A for all A, and independent coproducts, preserved by the tensor ®.
With Theorem 20, we know that (C, ®, O) is a dagger symmetric monoidal category.

We will prove that (C, @, O, ®, I) is a dagger rig category.

First, we can define the distributor as the following mediating morphism.

A®C ———— (A®C)® (B®C) ———— BeC
|

i1®idc Cli ir®idc
¥

(AeB)®C

Since both (i1, iz) and (i; ® id, i; ® id) are indenpendent coproducts, d is necessarily a dagger
isomorphism.

The rest of the proof consists in verifying all the 23 coherence diagrams [63, Section 2.1] that
define a rig category. We pick some of them to display the proof strategy.

Lemma 40. The following diagram commutes for all objects A, B, C.

(A®C)® (B®C) —— (A8 B)®C
(BOO)®(A®C) —L—— (BoA)®C
Proor. By definition, the following diagram commutes:

A®C B®C

i i19C L2 i,®C
~, >< —
(A®C)® (B®C) - ----- d—--- (AeB)®C

|
|
|
o o®C
|
|
|

Y 4
B®C)®(A®C) - —---- d ----» (BOA)KRC

i1®C il i,®C

— T

BaC A®C

35

Quantum circuits are just a phase

We have then

(c®id)di; = (c®id)(i; ® id) = (i, ® id) = d'i, = d'oiy,
(0 ®id)diy = (0 ®id) (i, ® id) = (i} ® id) = d'i| = d’i,.

By joint epicness, (0 ® id)d = d’o. O
Lemma 41. The following diagram commutes for all objects A, B, C, D.
(A®D)® (B®D)& (C®D)) ——% (A®D)® (B® D)) & (C® D)
\Lid@d ldeaid
(A®D)® ((B@C)® D)) ((A®@B)®D)® (C®D)
(A® (B®C))®D a®8id s (A®@B)®C)®D
Proor. By definition, the following diagram commutes:
A®D B®D C®D
\\ , ., / \ ;
J1 \ Jo J1
'\ _-- (A®D)®(B®D)
. : T i i —
/ | 1 2
/// \I(
/ (A®D)®((B®D)®(C®D)) ----a® —--> ((A®D)®(B®D))®(C®D) |
! | | \
! ided, d;@id !
| v v |
a (A®D)®((BoC)®D)) ((A®B)®D)®(C®D) d
\ ! / ! 'l
d; d> I
3 ~ 92 /
(A®(BaC))®D > ((A®B)®C)®D
0 0N
ki ®id : : k;®id
| _— | P
~~> (A®B)®D (B&C)®D <--~
o K P N
I/ ®id I®id L®id L®id
~_ _— ~
C®D

and we conclude by successive joint epicness of (ji, j2) then of (i, iz).

36 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

Lemma 42. The following diagram commutes for all objects A, B, C, D.

(A®B)®C)® (A®B)®D) —%2 (A9 (B&C))® (A® (B®D))

(A®B)® (C® D)

s

AR ((B®C)® (B®D))

\Lid@d

> A® (B® (C® D))

Proor. By definition, the following diagram commutes:

(A®B)®C d s A®(B®C)
J1 iy
(A®B)®D = [A®(B®D)
I I
J2 iz
+ o o +
((A®B)®C)®((A®B)®D) —2% % (A®(B®C))®(A®(B®D))
| |
l d'z
|
dy A®((B®C)®(B®D))
|
| 1d®d’
\I/ ®
(A®B)®(C®D) = > A®(B®(C@D)) idei;
/I\
id®k; id® (1d®k1)
| 1d®z2
(A®B)®C o N A®(B®C)
id®k; id® (1d®kz)
(A®B)®D o (B®D)

and we conclude by joint epicness of (ji, j2).

B.3 Proof of Theorem 27

We wish to prove that for all well-typed patterns p and unitaries s, we have that:

there exists a morphism [p]* such that ([p], [p]*) is an independent coproduct;
the morphism [p]* is unique up to dagger isomorphism;

the morphism [p] is a dagger monomorphism;

the morphism [s] is a dagger isomorphism.

Proor. The second point is a direct consequence of Lemma 18. We prove all other three state-
ments by induction on the typing derivations. Note that the two first statements only apply to
patterns, while the last one only applies to unitaries.

Quantum circuits are just a phase 37
J P

e Case Ph(8). Direct.

e Case s;t. The induction hypothesis gives that [[s] and [¢] are dagger isomorphisms. By
definition, we have [[s; t] = [t][s], and dagger isomorphisms are stable by composition.

e Case s ® t. We have by definition [s ® ¢] = [s] ® [¢], and ® preserves dagger isomorphisms.

e Case id,. Direct.

e Case if let p thens. We write u for [[if let p thens]. Lemma 33 ensures that u is dagger monic.
Additionally, since ([p], [p]*) is an independent coproduct, we have unique u and v such

that up] = [p][s]. u[p]* = [P]*. op] = [p][s]" and o[p]* = [p]".

[an] —2— [qm] 12— o

A
[[S]]l v lid
)l
A

lan] o > [am] < o

o -

We have:
wolp] = ulp][s]" = [p][s)Is1" = [p],
wolp]* =ulp]* = [p]*
Since ([p], [p]*) is jointly epic, we have uov = id, therefore u is a dagger isomorphism.
e Case |x). Direct, by definition.
e Case p - g. Dagger monomorphisms are preserved by composition. We define

[p - al* = [[p]lal*. [p]*] o =
and we wish to show that ([p - ¢], [p - ¢]*) is an independent coproduct. First, if we have an
independent cospan (hy, h2), then u exists because ([[p], [p]*) is an independent coproduct
and v exists because ([q], [¢]*) is an independent coproduct, such that the following diagram
commutes.

lq] lal*

[al] > [an] <

l

h

Therefore, there exists a unique mediating morphism. Now, if we have f and g such that
flp-ql =glp - ql and flp - q]* = glp - q]*, then

{f[[Pﬂ[[q]] = g[p]lq]
£ ledlal*. [p]*] = 9 [IpDlal* [p]*] .

flpllql = glpllql

flpllal* = glpllal*

flal* = glal*
The two first lines imply that f[p]] = g[p] because ([q], [g]*) is jointly epic, which implies
with the last line that f = g because ([p], [p]*) is jointly epic. Thus ([p - q], [p - q]*) is
jointly epic. We conclude that ([p - q], [p - q]*) is an independent coproduct.

thus

38 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

e Case p ® q is very similar to the previous one, with

[p®ql" ==o[lpl* ®I[ql. [[p] ® lg]*. [p]* ® [4]]| o =

B.4 Semantics of “if let”

We prove Proposition 29 in separate lemmas.
Lemma 43. We have that [[if let p then if let g then s]| = [if let p - g then s].
Proor. The morphism [if let p - g then s] is, by definition, the unique u such that

{U[[P ~q] = [pllallsl
ulp-ql* =Tlp-ql*
which means that it is the unique u such that

ulpllql = [p]lal[s]
ulpllql* = [p1lql*
ulpl* = [p]*
Moreover, [if let g then s] is, by definition, the unique v such that
{vﬂq]] = [qlls]
olg]* = [a]*
and [[if let p then if let g then s] is, by definition, the unique w such that
{W[LP]] = [plo
wlp]* = [p]*

If we precompose the first line of the last observation by [q] (resp. [¢]*), we then obtain the

following:
wlp]lal = [p]lqlls]
wlp]lql* = [pllql*
wlpl* =[p]*
We conclude that u = w by uniqueness. O

Lemma 44. We have that [if let p then (s;t)] = [[if let p then s;if let p then t].

Proor. By uniqueness.

N
“ l Ir] ’//i [p]* lid
|
|

|
T hE
[[t]]l \;& lid

[r] (e

Lemma 45. We have that [if let t then s = [t][s][¢] .
Proor. The morphism [if let ¢ then s] is, by definition, the unique u such that

{u[[t]] = [e][s]
u0 =0

Since the second equation always holds, the morphism u is the unique one such that u[¢] = [¢][s],
which also holds for [¢][s][¢]", thus we conclude that u = [¢][s][¢t]". m]

Quantum circuits are just a phase 39
J P

B.5 Proof of soundness

Since g designates the subspace on which the program is applied, we should have that if eval(‘;’l,r (s) =
¢, then [c] is the mediating morphism u in:

lam] > lan] <= @
¢ i

[a] @ [ak] ® [ar] |

id®[[sﬂ®idl 1:¢ id (4)

[q/] ® [ak] ® [qr] i

! :

~
[am] —m lan] e

where ¢: [ql] ® [qk] ® [qr] — [gm] is the coherence isomorphism between the two objects, since
we know that [+ k +r =m.
We have the following:

o Ifevaly; (s) =c, then [c] is the mediating morphism u of the diagram above;
o if evalz,l,r (p) = (¢,q), then [c][¢'] = [q]£(id ® [p] ® id)&'". Note that it implies that
[e-¢']=1[q- (id; ® p ®id,)], and therefore
[llg'T" = [0. [c]lg'T"] = [c - ']~
=[g- (id;® p®id,)]*
= [[q]* [ql¢Gd ® [p]* @id)] o =.

Proor.
evalgyl!r(s) =c eval;’l’r(t) =c
eval“;l’r(Ph(G)) = [if let g then Ph(0) ® id;.,] evalg,l,r(s; t)y=cHc
Fs: gk © gk Ft:qky & gk eval;’l’sz(s) =c eval;’Hkl’r(t) =c
eval;’l’r(s ®t) =cHc
eval’, (p) = (c.q) evalls, () =¢ e {01,+-)
eval“;’l’r(idk) =] evaI;’l’r(if let p thens) = T He evalz’l’r(lx)) = ([Lqllx) /1)
eval;,l,r (s)=c evalgylyr(Pl) =(c,q) evalg,’l’r(Pz) =(c".q")
eval), (s) = (¢.q) eval’, (p1-p) = (¢ #c.q")

F Qi < gk Fp2iqiz<gke evall, . (p)=(cq) evall, . (p2)=(c.q")
evals)l’r (p1®p2) =(c" #¢,q")

e Case eval;,l,r(Ph(B)). This one is true by definition.
e Case eval;’l’r(s; t). Direct by composing the two diagrams for the definition of the semantics
of the evaluation (see (4)), because ¢ is a dagger isomorphism.

40 Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

e Case eval;, 1 (s ® t). Without loss of generality, we will work here with
¢&: [al] ® [aki] ® [ak] © [qr] — [qm]
and thus,
fidoid® [t] ®id)E'é(id ® [s] ® id ® id) &
={(id®id® [t] ® id)(id ® [s] ® id ® id)&"
=£(id ® [s] ® [t] ® id)&"
which is enough to conclude.
e Case eval;,l,r(idk) is trivial.
e Case evalg)l’r(if let p thens). Let u; denote the semantics of ¢, and u, the semantics of ¢’ and

u the semantics of if let p then s. We wish to prove that uluguI is the mediating morphism
in the following diagram:

[qm] Lol > [qn] < Ll .
u
g [qm'] la'] s Tqn] <[[q]] R
l‘gﬂ' :
|
1d®[[p]] ®id 1d®[[p]]®1d . |
— [d @ [qk] @ [ar] <—— [all @ [aj] @ [ar] !
| 1
1d 1 u id®[s] ®1dl ulz id id
|
*iepralal ® [[qk]] ® lar] e [l @ laj] ® [ar] !
I :
v ~
’ \ <
¢ [[qm]] 4] 4 [[qn]] \llq/]]J_ s
ull
N , '
[am] T > lan] < .

First, we know by induction hypothesis that

wlg']* = [lql*. [qdéGd @ [p]* ®id)] o =
which means that
{ [q'] =i = ul[q]*

[T+ =tz = uj[q]&(id ® [p]* ® id)
and we also know that:

uq] = [qlé(id © [p] ® id)”*
and that u; is the mediating morphism for the right internal square. We need to prove that
uluzuI is indeed the mediating morphism of the diagram, meaning that:

{uluzuz[[q]] = [q]éut’
wzu] [q]* = [q]*

The first equation is equivalent to:

uptt] [q)€ = u] [q]éu

Quantum circuits are just a phase 41

and since (id ® [p] ® id, id ® [p]* ® id) is jointly epic, it suffices to prove that
{ upu) [q£(id ® [p] @ id) = u] [q)éu(id @ [p] ® id)
wuy[q)éGid @ [p]* @ id) =] [q]Eu(id ® [p]* ® id)
Now,
wui[gléid @ [p] @ id) = w[q]¢

=[q']¢ ([d @ [s] ® id)
=u[q)é(id ® [p] ® id)(id ® [s] ® id)
= u][qu(id ® [p] @ id)

upu [q)Gd ® [p]* ® id) = uz[q]* =i
= [¢1=
= ul [qléGd ® [p]* ® id)
and finally,
wu[q]* = usq* =iy

=[q'] =i
S
=uy[q]

which concludes.
e Case evalzlr(|x)). Direct.

e Case evalz ,-(5). Let u be the mediating morphism in the induction hypothesis. We then
have

ulq] = [qJé(id ® [s] ®id)¢"

which concludes.
e Case evalgf(pl - p2). By induction hypothesis, we know that:

w[q'] = [qléGid ® [p1] ® id)¢"
and
uz[q’] = [¢']€ (id @ [po] @ id)&""
Thus,
uizq”’] = w[q']€ (id ® [p]. ® id)&”"
= [q]éGd ® [p1] ® id)x" ¢ (id ® [p,] ® id)&""
= [ql&(id ® [p1][p2] ® id)&”"
= [g]£(id ® [p1 - pa] @ id)&""

which concludes.
e Case evalz’l’r (p1 ® p2). Without loss of generality, we will work with

&+ [ql] ® [gki] ® [qk2] ® [qr] — [qm],
&: [ql] ® [qji] ® [qkz] ® [qr] — [qm]’,
&: [ql] ® [q/1] ® [qjz] ® [qr] — [am].

42

Chris Heunen, Louis Lemonnier, Christopher McNally, and Alex Rice

By induction hypothesis, we know that:
mlq'] = lglé(id® [p] ® id ® id)&,'

and

u2[q"] = [q']&:(1d ® id ® [p.] ® id) &5
Thus,

uiuz[q"] = w[q']&(d ® id ® [po] @ id)&;"
= [qlé&(id ® [p1] ® id @ id)&, & (id ® id ® [pa] @ id) &'
= [q]& (id ® [p1] ® id ® id) (id ® id ® [p2] ® id)&"
= [ql& (id ® [p1] @ [p2] @ id) &'
= [q)&1(id ® [p1 ® po] ® id)&5"

which concludes.

Soundness is then simply a corollary.

	Abstract
	1 Introduction
	2 Quantum Computing
	3 Syntax
	4 Algorithms
	4.1 Grover's Algorithm
	4.2 Quantum Simulation
	4.3 Quantum Fourier Transform
	4.4 Quantum Signal Processing
	4.5 Quantum Eigenvalue Transform

	5 Compilation
	6 Categorical Semantics
	6.1 Dagger Categories
	6.2 Independent Coproducts
	6.3 Semantics of ``if let''
	6.4 Soundness

	7 Beyond Combinators
	7.1 Functional
	7.2 Semantics of the Functional Language
	7.3 Imperative

	8 Future Work
	References
	A Proof of Type-Soundness
	B Proofs of Section 6
	B.1 Proof of Theorem 20
	B.2 Proof of Theorem 23
	B.3 Proof of Theorem 27
	B.4 Semantics of ``if let''
	B.5 Proof of soundness

