
Strictly Associative and Unital 8-Categories

as a Generalized Algebraic Theory

Eric Finster∗, Alex Rice†, and Jamie Vicary‡

April 16, 2024

Abstract

We present the first definition of strictly associative and unital 8-category. Our
proposal takes the form of a generalized algebraic theory, with operations that give
the composition and coherence laws, and equations encoding the strict associative
and unital structure. The key technical idea of the paper is an equality generator
called insertion, which can “insert” an argument context into the head context,
simplifying the syntax of a term. The equational theory is defined by a reduction
relation, and we study its properties in detail, showing that it yields a decision
procedure for equality.

Expressed as a type theory, our model is well-adapted for generating and verifying
efficient proofs of higher categorical statements. We illustrate this via an OCaml
implementation, and give a number of examples, including a short encoding of the
syllepsis, a 5-dimensional homotopy that plays an important role in the homotopy
groups of spheres.

1 Introduction

Background. The theory of higher categories has growing importance in computer
science, mathematics, and physics, with fundamental applications now recognized in
type theory [9, 19], quantum field theory [1, 14], and geometry [12]. Its relevance for
logic was made abundantly clear by Hoffman and Streicher [9], whose groupoid model
of Martin-Löf type theory violated the principle of uniqueness of identity proofs (UIP).
This paved the way to the modern study of proof-relevant logical systems, in which one
can reason about proofs themselves as fundamental objects, just as one may study the
homotopy theory of paths of a topological space.

While this proofs-as-paths perspective yields considerable additional power, a key
drawback is the extensive additional proof obligations which can arise when working
with the resulting path types. These are commonly understood to organize into three
classes: the associator witnessing that for three composable paths f, g, h, the compositions
f ˝ pg ˝ hq and pf ˝ gq ˝ h are equivalent; the unitors witnessing that id ˝f and f ˝ id

∗University of Birmingham, e.l.finster@bham.cs.ac.uk
†University of Cambridge, alex.rice@cl.cam.ac.uk
‡University of Cambridge, jamie.vicary@cl.cam.ac.uk

1

should both be equivalent to f itself; and the interchanger witnessing that compositions
in different dimensions should commute. Worse, such path witnesses themselves admit
further constraints, such as the pentagon condition for associators, for which further
higher-dimensional witnesses must be computed, compounding the problem exponentially
in higher dimensions.

The need to construct and manage such witnesses (also called weak structure) can
complicate a path-relevant proof, potentially beyond the point of tractability. Indeed an
explicit proof of the syllepsis, an important homotopy from low-dimensional topology
which is entirely formed from such path witnesses, was formalized only recently [5, 16].
This motivates the search for a syntax that can trivialize witnesses as far as possible, an
effort which has been underway in the mathematics community since at least the 1970s.
An early realization was that in the fully strict case, where all witnesses are trivialized,
too much expressivity is lost, with Grothendieck being one of the first to observe this [8,
page 2].

The focus therefore turned to identifying a semistrict theory, where as many witnesses
as possible are trivialized, while retaining equivalence with the fully weak theory. An early
contribution by Gray [7] yielded a definition of semistrict 3-category with trivial associators
and unitors, leaving only the interchangers nontrivial; later work by Gordon, Power and
Street showed that this definition loses no expressibility [6]. Simpson conjectured that
this could be extended to n-categories [15], and Street had sketched a possible approach
based on iterated enrichment, where a closed monoidal category of semistrict n-categories
is defined in each dimension [17]; however, an analysis by Dolan [3] indicated that the
required monoidal closure properties could not be fulfilled.

(a) T :“

α β

γ , argpαq :“

ϕ ψ

⇝ T 1 :“

βϕ ψ

γ

(b) T :“

α β

γ , argpαq :“
ϕ

ϕ

ϕϕ

⇝ T 1 :“

β

γ

(c) T :“

α β

γ , argpαq :“ ϕ

ϕ

ψ {⇝

Figure 1: Illustrating the insertion operation.

Contribution. We present a generalized algebraic theory whose models are 8-categories
with strict associators and unitors, with only the interchanger structure remaining weak.
To our knowledge this is the first such definition to have been presented in the literature.
In this theory the operations give the compositional structure and coherence laws of the
8-category, while the equational theory trivializes the associator and unitor structure.

2

For example, the equation pf ˝ gq ˝ h “ f ˝ pg ˝ hq is derivable in our theory.
Our proposal is implemented as a type theory, and the type checker can apply such

equalities automatically, without requiring the user to specify explicit associator witnesses.
This allows the user to work directly with the semistrict theory, building proofs which
neglect associator and unitor witnesses and their higher-dimensional counterparts, with
the computer nonetheless able to verify correctness of the resulting terms. For example,
this would enable the user to directly compose higher paths of type p ñ pf ˝ gq ˝ h and
f ˝ pg ˝ hq ñ q, even though it seems they should not be directly composable.

Alternatively, given a proof which includes all such explicit witnesses, the system can
“compute them out”, returning a normal form where associator and unitor structure has
been eliminated as far as possible. This has the potential to yield a simpler proof.

Our key technical contribution is an insertion procedure which generates the semistrict
behaviour of our equality relation, and which we show satisfies a simple universal property.
Any operation in our theory is defined with respect to a pasting context, an arrangement
of discs that governs the geometry of the composition; combinatorially, these correspond
to finite planar rooted trees. Any operation then has a head tree, with arguments
corresponding to the leaves of the tree. We require two simple definitions: for a rooted
tree, its trunk height is the height of the “tree trunk”; and for any leaf, its branch height
is the height of the highest branch point sitting below it. For a compound operation,
where arguments of the head tree are themselves assigned further operations, insertion
operates as follows, for some chosen leaf α of the head tree: if the branch height of α is
at most the trunk height of the argument tree at α, and if the argument operation is in
“standard form”, we can insert the argument tree into the head tree.

We illustrate this in Figure 1, using Greek letters to label the leaves. In each part,
the head tree T has an argument α of branch height 1 (since descending from α, the first
branch point we encounter is at height 1.) In part (a) the argument tree drawn in red
has trunk height 1, and so the height test is satisfied and insertion can proceed, yielding
an updated head tree T 1 in which the entire argument tree has been inserted and is now
visible in red as a subtree, replacing the original leaf α. In part (b) the argument tree
also has trunk height 1, and so the insertion can again proceed, although in this case,
due to the short stature of the argument tree, the effect is simply to remove the leaf α of
the head tree. In part (c) the trunk height of the argument tree is 0, so the height test is
not satisfied and insertion cannot proceed. This last example makes it intuitively clear
why the height test is important: since the trunk height of the argument tree is so small,
there would be no reasonable way to insert the argument tree into the head tree without
disrupting the leaf β.

We combine insertion with two other simpler procedures, disc removal and endo-
coherence removal, to produce our reduction relation on operations of the theory. Our
major technical results concern the behaviour of this reduction relation. We show that
it terminates, and that it has unique normal forms, yielding a decision procedure for
equality.

Implementation. We have produced an OCaml implementation of our scheme as a type
theory, which we call Cattsua, standing for “categorical type theory with strict unitors
and associators”. In Section 5 we give three worked examples, showing that the triangle
and pentagon conditions of the definition of monoidal category completely trivialize, and
demonstrating that a known proof of the 5-dimensional syllepsis homotopy reduces to a

3

substantially simpler form.

Formalisation. All technical results in this paper have been formalised in Agda and is
available at:

https://github.com/alexarice/catt-agda/releases/tag/v0.1

The formalisation compiles with Agda version 2.6.3 and standard library version
1.7.2. As well as the formalisations for theorems that appear in this paper, the repository
contains a collection of proofs about various different versions of Catt, which is achieved
by formalising the meta theory for a version of Catt with parameterised equality rules,
which is presented in Section 2.5 of this paper.

Related Work. Our work is based on the theory of contractible 8-categories, a well-studied
model of globular 8-categories originally due to Maltsiniotis [13], who was building on
an early algebraic definition of 8-groupoid by Grothendieck [8]. An excellent modern
presentation is given by Leinster in terms of contractible globular operads [10].

Our algebraic theory builds on an existing type theory Catt for contractible 8-cate-
gories presented at LICS 2017 [4], and its extension Cattsu presented at LICS 2021 [5]
which describes the strictly unital case. That work includes a reduction relation called
pruning, which removes a single leaf variable from a pasting context. Here the pruning
operation is replaced by insertion, which includes pruning as a special case, but which
in general performs far more radical surgery on the head context. As a result, the
termination and confluence properties here are significantly more complex to establish.
Our termination proof uses new techniques that quantify the syntactic complexity of a
term, while our confluence proof must analyze many additional critical pairs, some of
which are fundamentally more complex than those handled previously. To allow surgery
on pasting contexts we also require a different presentation of contexts in terms of trees,
which changes many aspects of the formal development. Furthermore, unlike the LICS
2021 paper, all technical lemmas here are formalized, putting the work on a stronger
foundation.

Above we discussed the problem faced by Street’s historical approach to defining
semistrict n-categories. While his approach aimed to build up the semistrict theory one
dimension at a time, we retain all the operations of the fully weak structure, instead
obtaining semistrictness via a reduction relation on operations. We do not require the
explicit definition of a tensor product on semistrict n-categories, nor do we require any
closure properties. As a result Dolan’s critique does not apply.

2 The Type Theory Catt

In this section we recall the type theory Catt and some of its basic properties. We
generalize the original presentation [4] by parameterizing the theory over a given set of
equality rules, thus allowing us to prove some general structural properties generically,
and allowing future investigations into strictness results to build on the theory developed
here. We will then specialize to the theory Cattsua, which is the focus of the present work.

Special cases of this general framework include the original presentation of Catt by
Finster and Mimram [4] in which the set of equality rules is empty, as well as the theory
Cattsu [5] whose rules we recall below in the present framework.

4

https://github.com/alexarice/catt-agda/releases/tag/v0.1

2.1 Syntax for Catt

Catt has 4 classes of syntax: contexts, substitutions, types, and terms; the rules for each
can be found in Fig. 2. We parameterise substitutions, types and terms by their context
of definition in order to avoid issues with undefined variables and write TermΓ for a term
in context Γ, TypeΓ for a type in context Γ, and σ : Γ Ñ ∆ for a substitution from Γ to
∆.

We let ” denote syntactic equality up to alpha renaming. Our presentation will be
in terms of named variables to improve readability, though in practice any ambiguity
introduced by this choice can be avoided by the use of de Brujin indices.

H : Ctx

Γ : Ctx A : TypeΓ

Γ, px : Aq : Ctx

xy : H Ñ Γ

σ : ∆ Ñ Γ t : TermΓ

xσ, x ÞÑ ty : p∆, x : Aq Ñ Γ

‹ : TypeΓ

A : TypeΓ s : TermΓ t : TermΓ

s ÑA t : TypeΓ

x P Γ

x : TermΓ

∆ : Ctx A : Type∆ σ : ∆ Ñ Γ

coh p∆ : Aqrσs : TermΓ

Figure 2: Syntax constructions in Catt.

A substitution σ : ∆ Ñ Γ maps variables of context ∆ to terms of context Γ. For any
t : Term∆ , A : Type∆, and τ : Θ Ñ ∆, one defines semantic substitution operations

tJσK : TermΓ AJσK : TypeΓ τ ˝ σ : Θ Ñ Γ

by mutual recursion on types, terms and substitutions (as in [4]). Note the use of doubled
brackets J´K to denote this operation, which we are careful to distinguish from the single
brackets r´s which are part of the syntax of the coherence constructor. Every context
has an identity substitution idΓ : Γ Ñ Γ which maps each variable to itself and the
operation of substitution is associative and unital so that the collection of contexts and
substitutions forms a category which we will denote Catt as an abuse of notation.

The set of free variables for each syntactic class is defined in a standard way by
induction. Given a context Γ and set of variables S Ď Γ, we say that S is downwards
closed when for all x : A P Γ, x P S implies that the free variables of A are a subset of S.
For any set S Ď Γ we can form its downward closure. We can then define the support of
a piece of syntax, which intuitively is the set of variables the syntax depends on.

Definition 1. Given a term t : TermΓ, the support of t, suppptq, is the downwards closure
of the free variables of t in Γ. The support of a type or substitution is defined similarly.

Example 2. Consider the context Γ “ x : ‹, y : ‹, f : x Ñ‹ y. Then the variable f is a
valid term in this context whose set of free variables is simply the singleton set tfu. The
support of f , however, is tx, y, fu.

5

Lastly we define the dimension of a type A, dimpAq, by dimp‹q “ 0 and dimps ÑA

tq “ 1 ` dimpAq. The dimension of a term t : TermΓ is given by dimpxq “ dimpAq when
x : A P Γ and dimpcoh p∆ : Aqrσsq “ dimpAq. The dimension of a context dimpΓq is the
maximum of the dimension of the types it contains. One proves easily by induction that
dimension is preserved by substitution.

2.2 Typing for Catt

The coherences of Catt are determined by a special class of contexts which we refer to as
pasting contexts. These correspond intuitively to configurations of globular cells which
should admit a unique composition. In particular, for a coherence term coh p∆ : Aqrσs

to be well typed it is necessary that ∆ is a pasting context. Determining whether an
arbitrary context is a pasting context is decidable and we write the judgment

∆ $p

when ∆ is a pasting context.
Crucial for the typing rules of Catt is the fact that every pasting context ∆ has a

well defined boundary, which is again a pasting context. For a natural number n, we can
construct Bn

∆, the n-dimensional boundary of ∆, and there are inclusion substitutions
δϵ,n∆ : Bn

∆ Ñ ∆ for each n and ϵ P t´,`u.
Rules for pasting contexts as well as a definition of the boundary operators can be

found in [4]. We will give an alternative description of pasting contexts as trees in later
in Section 2.4.

H $

Γ $ Γ $ A

Γ, px : Aq $

Γ $ ‹

Γ $ A Γ $ s : A Γ $ t : A

Γ $ s ÑA t

∆ $ xy : H

∆ $ σ : Γ Γ $ A ∆ $ t : AJσK

∆ $ xσ, x ÞÑ ty : pΓ, x : Aq

Γ $ px : Aq P Γ

Γ $ x : A

∆ $p ∆ $ s ÑA t Γ $ σ : ∆

supppsq “ supppδ
´,dimp∆q´1
∆ q suppptq “ supppδ

`,dimp∆q´1
∆ q

Γ $ coh p∆ : s ÑA tqrσs : sJσK ÑAJσK tJσK

∆ $p ∆ $ s ÑA t Γ $ σ : ∆
supppsq “ suppptq “ Γ

Γ $ coh p∆ : s ÑA tqrσs : sJσK ÑAJσK tJσK

Figure 3: Typing rules for Catt.

With these notions in hand, the typing rules for Catt are given in Fig. 3. All these

6

rules are relatively standard for dependent type theories with the exception of the last
two which describe the typing of coherence terms. Both of these latter rules for typing a
coherence coh p∆ : s ÑA tqrσs require that ∆ must be a pasting context and that s ÑA t
and σ are both well typed. The first rule says that s must be supported by the source
of ∆ and t by the target of ∆. Terms typed with this rule represent compositions. The
second rule instead states that s and t are full, they are supported by the whole context.
These terms witness that any two full terms over a pasting diagram should be equivalent.

2.3 Constructions and Examples

Disc Contexts. Among the pasting contexts, we may distinguish the disc contexts which
play an important roll in further constructions. An example of a disc context can be seen
in Fig. 4.

Definition 3. The n-dimensional disc context Dn has a top-dimensional variable dn, and
variables d´

k , d
`
k for each k ă n. We have d˘

0 : ‹, and d˘
k : d´

k´1 Ñ d`
k´1 for all 0 ă k ď n.

Substitutions out of Dn are special in that they are fully determined by a type of
dimension n, and a term of that type. That is, given A : TypeΓ and t : TermΓ, there is a
substitution tA, tu : DdimpAq Ñ Γ, and any substitution from a disc is of this form.

Unbiased Operations. A given pasting context Γ generally gives rise to many different
valid coherences. Among these, there is a particular class of coherences, the unbiased
ones, which will play an important role in our definitional equality below. Intuitively
speaking, these are the coherences which compose all of the cells in a pasting diagram
“at once” instead of first composing sub-diagrams. They may be defined recusively as
follows:

Definition 4. Given a pasting diagram ∆, we mutually define for all n the unbiased
coherence Cn

∆, the unbiased term T n
∆ , and the unbiased type Un

∆:

Cn
∆ “ coh p∆ : Un

∆qrids

T n
∆ “

#

dn when ∆ is a disc

Cn
∆ otherwise

U0
∆ “ ‹

Un`1
∆ “ T n

Bn
∆
Jδ´,n

∆ K ÑUn
∆
T n

Bn
∆
Jδ`,n

∆ K

The unbiased type takes the unbiased term over each boundary of ∆, includes these all
back into ∆ and assembles them into a type. When n “ dimp∆q we will refer to the
unbiased coherence as an unbiased composite.

First Examples. We start with some basic examples of categorical operations. The
following pasting context contains the composable pair of morphisms f : x Ñ y and
g : y Ñ z:

Γ “ x : ‹, y : ‹, f : x Ñ‹ y, z : ‹, g : y Ñ‹ z

We can use this to form the composite of f and g, as a term in Γ:

f ¨ g :“ coh pΓ : x Ñ‹ zqrids : x Ñ‹ z

7

This satisfies the support conditions for the first typing rule for coherences, since x is full
over the context x : ‹, and similarly for z. Given a variable t of type ‹, we can form the
identity coherence associated to t (not to be confused with the identity substitution) as
follows:

1t :“ coh ppx : ‹q : x Ñ‹ xqrxx ÞÑ tys : t Ñ‹ t

This can be typed using the second typing rule for coherences.

d´
0 d`

0

d`
1

d´
1

d´
2 d`

2

d3

Figure 4: The disc context D3.

The substitution part of the coherence allows us to form compound operations. For
example, the following syntax represents a term in the context ∆ “ x : ‹, y : ‹, f : x Ñ‹ y:

f ¨ 1y :“ coh pΓ : x Ñ‹ yqrxf ÞÑ f, g ÞÑ 1yys : x Ñ‹ y

Here we omit the lower-dimensional components of the substitution as they can be
inferred, a technique that we will use repeatedly. Building on this last example we can
form the unitor ρf witnessing the unitality of 1:

ρf :“ coh p∆ : f ¨ 1y ÑxÑ‹y fqrids : f ¨ 1y ÑxÑ‹y f

and similarly we can generate the associator as a coherence over the context Θ “ Γ, w :
‹, h : z Ñ‹ w.

αf,g,h :“ coh pΘ : pf ¨ gq ¨ h ÑxÑ‹w f ¨ pg ¨ hqqrids

: pf ¨ gq ¨ h ÑxÑ‹w f ¨ pg ¨ hq

We note that both the composition and identity examples are in fact examples of
unbiased composites as can be seen by straightforward calculuation.

More generally we can define the identity term for any n-dimensional term s of type
A as follows:

1JtA, suK “ Cn`1
Dn JtA, suK

2.4 Trees

Pasting diagrams like the ones used in Catt have a well known correspondence to finite
planar rooted trees (henceforth, simply “trees”) [18]. Our insertion construction (see
Section 3) is more easily defined using the representation of a pasting context as a tree,
and so we pause to work out this correspondence here.

8

Suspension. In topology, given a space X, we can construct a new space ΣX which
is obtained by stretching X into a cylinder and then collapsing each of the top and
bottom “caps” to a point. More formally, the suspension is a quotient of the product
space X ˆ r0, 1s, where everything X ˆ t0u is identified, and everything in X ˆ t1u is
identified. This construction may also be described simply in terms of paths: the space
ΣX has two points with a path between these points for each element of X. As an
example, suspending a circle yields a sphere with the original circle embedded as the
equator. Each point of the circle then determines a meridian, and this motivates the
convention of called the two additional points “North” and “South”.

An analogue of the suspension operation exists in the theory Catt [2]. As with many
constructions in Catt, it is mutually inductively defined on all pieces of syntax.

• For context Γ, its suspension ΣΓ has two new variables N : ‹, S : ‹ (N for north
and S for south), as well as a variable x : ΣpAq for each x : A P Γ.

• For type A : TypeΓ, its suspension ΣA : TypeΣpΓq is given by Σ‹ “ N Ñ‹ S and
Σps ÑA tq “ Σs ÑΣA Σt. Note that this raises the dimension of the type by 1.

• For term s : TermΓ, its suspension Σs : TermΣpΓq is defined by Σx “ x for variables
x P Γ, and Σpcoh p∆ : Aqrσsq “ coh pΣ∆ : ΣAqrΣσs.

• For substitution σ : ∆ Ñ Γ, the suspension Σσ : Σ∆ Ñ ΣΓ sends N to N , S to S
and x to Σt for each x ÞÑ t P σ.

We note that for Σpcoh p∆ : Aqrσsq to be well typed we must have that Σ∆ is a pasting
diagram. This is in fact the case whenever ∆ is itself a pasting diagram. One can
additionally show that suspension forms a functor Σ : Catt Ñ Catt on the category of
contexts.

Example 5. The suspension of x : ‹, y : ‹, f : x Ñ‹ y, z : ‹, g : y Ñ‹ z, is the following
context:

N S

z

x

y

g

f

and the suspension of the 1-composition operation gives the vertical composition of 2
cells.

Lemma 6. For all n, ΣDn ” Dn`1. Further for all pasting contexts ∆:

ΣCn
∆ ” Cn`1

Σ∆ ΣT n
∆ ” T n`1

Σ∆ ΣUn
∆ ” Un`1

Σ∆

Wedge Sum. In topology, the wedge sum of two pointed spaces pX,xq, pY, yq is the
disjoint union of X

š

Y , with x identified with y. This may be realized as a colimit of
the following diagram:

X Y

‚

x y

9

A similar construction may be made for pasting contexts. We note first that it is a
basic consequence of the their definition that every pasting context begins with a variable
of type ‹. Now, given Γ “ Γ1, px : ‹q,Γ2 where Γ2 contains no variables of type ‹ (i.e.,
the variable x is the last variable of this type) and ∆ “ py : ‹q,∆1, we may define

Γ _ ∆ :“ Γ1, px : ‹q,Γ2,∆1rx{ys

where ∆1rx{ys denotes the result of substituting x for y in all the types which appear
in ∆1. One easily checks that the result is again a pasting diagram. Moreover, this
construction has an obvious extension to multiple pasting contexts, which we write as:

n
ł

i“1

Γi “ Γ1 _ Γ2 _ ¨ ¨ ¨ _ Γn

Example 7. We consider D2 _D2. This glues two 2-discs at a point and yields a context
of the following form:

‚ ‚ ‚

We note that this is a pasting diagram which can be used to define the gives horizontal
composition operation on 2-cells.

To simplify definitions of substitutions between wedge sums of pasting contexts, we
will write substitutions diagrammatically by specifying the individual components. Indeed
given substitutions σ : Γ Ñ Γ1 and τ : ∆ Ñ ∆1 such that σ sends the last terminal
‹-typed variable of Γ to that of Γ1 and τ sends the initial variable of ∆ to that of ∆1, one
sees easily that there is a well defined substitution σ _ τ : Γ _ ∆ Ñ Γ1 _ ∆1 which we will
depict as:

Γ1 _ ∆1

Γ _ ∆

σ τ

Tree Contexts. We now have the machinery needed to define the context generated from
a tree. Our definition of tree will be based on lists which we will write in square bracket
notation rx1, . . . , xns. We also use common list notations such as `̀ for concatenating
two lists, [] for the empty list, and n :: ns for the list with first element n and tail given
by the list ns.

We these conventions, we may define trees inductive as follows:

Definition 8. A planar rooted tree is a (possibly empty) list of planar rooted trees.

Subtrees of a tree can be indexed by a list of natural numbers P , giving a subtree TP , by

letting T[] “ T and T k::P “ pTkq
P

if T “ rT1, . . . , Tns.
Each tree generates a context, using the constructions of the previous subsections.

Definition 9. For a tree T “ rT1, . . . , Tns, the context tT u generated from it is given by:

tT u :“
n

ł

i“1

ΣtTiu

10

Here we understand the convention that when T is the empty list, we get a singleton
context of the form : ‹. We will commonly abuse notation and omit the t´u operator
and use trees as contexts when it will not cause confusion.

By a simple induction using the properties of suspensions and wedge sums, we get
that any context generated from a tree is a pasting context. The stronger result holds
that t´u is an isomorphism between trees and pasting diagrams, though we omit the
proof here as it will not be needed for the definition of insertion. Next we give some
simple definitions on trees that will be needed later.

Definition 10. The dimension of a tree dimpT q is 0 if T is empty or 1 ` maxk dimpTkq

if T “ rT1, . . . , Tns. For a tree T , its trunk height, thpT q, is 1 ` thpT1q if T “ rT1s and 0
otherwise. A tree is linear if its trunk height equals its dimension.

‚x y

‚f h

‚

α
‚

β

g

x yg

f

h

β

α xpfαgβhqy

Figure 5: Example tree and identity labelling.

Under the bijection between trees and pasting contexts, a substitution σ : tT u Ñ Γ
from the context associated to T to an arbitrary context Γ may be represented by an
appropriate type of labellings of T which we now define:

Definition 11 (Tree Labelling). A labelling L : T Ñ Γ from a tree T “ rT1, . . . , Tns to
Γ is the following data:

t0
L1t1 ¨ ¨ ¨ Lntn

where each ti is a term of Γ and each Li : Ti Ñ Γ is itself a labelling of Ti in Γ. The terms
ti label the 0-dimensional variables of the tree, and this can be graphically represented
by writing each term between the two branches of the tree it sits between, as in Fig. 5.
Every tree has an identity labelling idT : T Ñ T .

Example 12. Fig. 5 shows a graphical representation of the tree [[[][]]] and the
context it generates. It graphically represents the identity labelling on this tree as well as
giving its regular representation on the right.

2.5 Catt with Equality Rules

We conclude this section by extending Catt with a definitional equality determined by a
set of equality generators R. We denote the resulting theory by CattR. Formally, each
generator R P R is given by a triple R “ pΓ, s, tq where Γ is a context and s, t P TermΓ.
In what follows, we identify certain properties a set of generators R might enjoy which
endow the resulting definitional equality with useful meta-theoretic behavior. We then
give some preliminary examples.

11

To begin, we fix a set R of equality generators and add inductively defined equality
judgments

Γ $ s “ t Terms s, t : TermΓ are equal.

Γ $ A “ B Types A,B : TypeΓ are equal.

Γ $ σ “ τ Substitutions σ, τ : ∆ Ñ Γ are equal.

These will be defined mutually inductively alongside the typing rules. We also add the
following new typing rule, named the conversion rule:

Γ $ s : A Γ $ A “ B

Γ $ s : B

Finally, in addition to the structural rules given in Fig. 6, we add a family of rules:

x P Γ

Γ $ x “ x

Γ $ s “ t

Γ $ t “ s

Γ $ s “ t Γ $ t “ u

Γ $ s “ u

∆ $ A “ B Γ $ σ “ τ

Γ $ coh p∆ : Aqrσs “ coh p∆ : Bqrτ s Γ $ ‹ “ ‹

Γ $ s “ s1 Γ $ t “ t1 Γ $ A “ A1

Γ $ s ÑA t “ s1 ÑA1 t1 Γ $ xy “ xy

Γ $ σ “ τ Γ $ s “ t

Γ $ xσ, x ÞÑ sy “ xτ, x ÞÑ ty

Figure 6: Structural rules for definitional equality.

pΓ, s, tq P R Γ $ s : A

Γ $ s “ t

These rules are deliberately asymmetric; Only the left hand side requires a proof of
validity. Preempting Section 4.1, this is because the equalities we use in our theories will
take the form of a reduction, where the right hand side will be constructed from the left
hand side of the equation. We refer to the equality relation “ defined by these rules as
definitional equality.

We now identify some attractive properties that the equality rules R can satisfy which
make the resulting type theory well-behaved.

Lifting Condition. R has the lifting condition if for all pΓ, s, tq P R and A : TypeΓ:

Γ, A $ s “ t

whenever Γ, A $ s : B for some B : TypeΓ,A. Note that even though s and t are terms
over Γ, they can be lifted to terms over Γ, A.

12

This condition allows us to show that all equality and typing is preserved by context
extension. It also gives us an easy proof that the identity substitution is well typed.

Substitution Condition. R has the substitution condition if for all pΓ, s, tq P R and
σ : Γ Ñ ∆ with ∆ $ σ : Γ and ∆ $ sJσK : C for some C : Type∆ we have:

∆ $ sJσK “ tJσK

If R satisfies the substitution condition then more generally we have that typing and
equality is preserved by substitution. We also get that given ∆ $ σ “ τ and s : TermΓ

that ∆ $ sJσK “ sJτK, though this does not actually require the substitution condition.

If the set of rules R satisfies the lifting and substitution conditions, then there is a
well-defined quotient category of well-typed contexts and substitutions which we will
denote (as a slight abuse of notation) by CattR.

Suspension Condition. We say that R has the suspension condition if for all pΓ, s, tq P R
we have that if ΣΓ $ Σs : A for some A : TypeΣΓ then:

ΣΓ $ Σs “ Σt

This is sufficient to show that typing and equality is respected by suspension.

Definition 13. A set of equality generatorsR is tame is it satisfies the lifting, substitution,
and suspension conditions.

In any tame theory, it can be shown that tree labellings and substitutions between
wedge sums can be well typed, and it can also be shown that the unbiased constructions
(type, term, and coherence) are valid.

Support Condition. R has the support condition if all pΓ, s, tq P R with Γ $ s : A we
have supppsq “ suppptq. Unsurprisingly, this condition being true implies all equalities
preserve support.

While this rule may at first appear obvious to show, it turns out to be not quite so
trivial. Despite knowing that s is valid, we have no guarantee that it is well behaved
with respect to support, as it could contain equalities that do not preserve support. We
therefore give the following lemma and proof strategy, with follows the method used in
[5] to show preservation of support. We first define a set:

Rs “ tpΓ, s, tq P R | supppsq “ suppptqu

This generates a new type theory CattRs . For clarity we let this type theory have
judgments of the form $s.

Lemma 14. Suppose for all pΓ, s, tq P R such that Γ $s s : A for some A : TypeΓ we
have that supppsq “ suppptq. Then R satisfies the support condition.

Using this lemma, we can make any constructions in R in CattRs which will auto-
matically give us that certain equalities preserve support. We will see this later with
insertion, where we will show that the insertion operation is valid in any theory satisfying
the appropriate conditions.

13

Conversion Condition. The last condition is the conversion condition that states that if
pΓ, s, tq P R then Γ $ s : A implies Γ $ t : A. This along with the support condition is
enough to show that equality preserves typing.

We can immediately see that Catt “ CattH, and since H trivially satisfies the above
conditions, all the results above hold for Catt itself.

Disc Removal. We give two examples of equality rules from Cattsu [5] which will be reused
for Cattsua. The first trivialises unary compositions.

Definition 15 (Disc removal). Recall that any substitution from a disc is of the form
tA, tu for some term t and type A. Disc removal equates the terms Cn

DnJtA, suK and s
in context Γ for any n, s : TermΓ, and A : TypeΓ. In other words, disc removal gives us
equalities of the following form, after unwrapping the constructions above:

Γ $ coh pDn : Un
DnqrtA, sus “ s

This can be intuitively understood as saying “the term s is equal to psq, the unary
composite of s”.

Disc removal gives the property that Cn
∆ “ T n

∆ for n ą 0, effectively removing the
need to differentiate between the two when working up to definitional equality.

Endo-Coherence Removal. The second equality rule simplifies a class of terms called
“endo-coherences”. These are terms of the following form:

coh p∆ : s ÑA sqrσs

These are “coherence laws” that can be understood intuitively as saying “the term srσs

is equal to the term srσs”. But we already have a canonical way to express that — the
identity on srσs. This inspires the following reduction.

Definition 16 (Endo-coherence removal). Endo-coherence removal is the following class
of equalities:

Γ $ coh p∆ : s ÑA sqrσs “ 1JtAJσK, sJσKuK

for all ∆, s, A, and σ such that coh p∆ : s ÑA sqrσs is not already an identity.

It can be checked (using proofs from [5]) that both disc removal and endo-coherence re-
moval satisfy all the conditions listed above. By defining the rule-set su “ tdisc removalY
endo-coherence removal Y pruningu, the type theory Cattsu is recovered. This establishes
that Cattsu is part of the general schema presented in this section.

3 Insertion

The semistrict behaviour of our type theory Cattsua, our adaptation of Catt with strict
units and associators, is principally driven by a new equality rule called “insertion”. This
equality rule incorporates part of the structure of an argument context into the head
context, simplifying the overall syntax of the term.

To be a candidate for insertion, an argument must not occur as the source or target
of another argument of the term, and we call such arguments locally maximal. Consider
the composite f ¨ pg ¨ hq. This term has two locally maximal arguments, f and g ¨ h,

14

the second of which is an (unbiased) coherence. Insertion allows us to merge these two
composites into one by “inserting” the pasting diagram of the inner coherence into the
pasting diagram of the outer coherence. In the case above we will get that the term
f ¨ pg ¨ hq is equal to the ternary composite f ¨ g ¨ h, a term with a single coherence. As
the term pf ¨ gq ¨ h also reduces by insertion to the ternary composite, we see that both
sides of the associator become equal under insertion. The action of insertion on these
contexts is shown in Fig. 7.

x y z
f g

x1 y1 z1
f 1 g1

⇝

x x1 y1 z1
f f 1 g1

Figure 7: Insertion acting on the composite f ¨ pg ¨ hq

More generally we consider a coherence term coh p∆ : Aqrσs : TermΓ, where there is
some locally maximal variable x : A P ∆ such that xJσK is itself an unbiased coherence
Cn
ΘJτK. Under certain conditions on the shape of Γ and ∆ (which will be specified in

Section 3.1) we will construct the following data as part of the insertion operation:

• The inserted context ∆!x Θ, obtained by inserting Θ into ∆ along x. The inserted
context is a pasting diagram.

• The interior substitution ι : Θ Ñ ∆!x Θ, the inclusion of Θ into a copy of Θ living
in the inserted context.

• The exterior substitution κ : ∆ Ñ ∆!x Θ, which maps x to unbiased coherence
over the copy of Θ, or more specifically Cn

ΘJιK, and other locally maximal variables
to their copy in the inserted context.

• The inserted substitution σ !x τ : ∆!x Θ Ñ Γ, which collects the appropriate parts
of σ and τ .

Using this notation, insertion yields the following reduction:

coh p∆ : Aqrσs⇝ coh p∆!x Θ : AJκKqrσ !x τ s

These constructions can be assembled into the following diagram:

Dn ∆

Θ ∆!x Θ

Γ

κ

ι

tA,xu

tUn
Θ,Cn

Θu
σ

τ

σ !x τ

{

15

The commutativity of the outer boundary is the equation xJσK “ Cn
ΘJτK, one of the

conditions for the construction. The commutativity of the inner square is a property of
the external substitution as stated above. Furthermore, as suggested by the diagram,
∆!x Θ is a pushout, and σ !x τ is unique map to Γ determined by the universal property
of the pushout. This gives a different way to think of the insertion, and gives the intuition
that insertion is the result of taking the disjoint union of the two contexts, and gluing
together x in the first with the unbiased coherence over the second.

3.1 The Insertion Construction

We have stated the existence of inserted contexts and associated maps, and claimed
that they satisfy a universal property. In this section we give a direct construction of
these objects. All constructions will be done by induction over the tree structure of
pasting diagrams, which were introduced in Section 2.4. Trees are more convenient for
our technical development than contexts, and so we will work with trees throughout.

To allow us to proceed with inductive definitions we need an inductive version of
a locally maximal variable, which we will call a branch. We define some properties of
branches as follows, illustrated in Figure 8.

P

tP u

bhpP q

thpT q

lhpP q

Figure 8: Illustrating leaf height, branch height and trunk height.

Definition 17. A branch P of a tree T is a non-empty indexing list for a subtree of T
which is linear. A branch P of T gives a locally maximal variable tP u of tT u by taking the
unique locally maximal variable of tTP u. Define the branch height of P , denoted bhpP q,
to be one less that the length of P (note that P is always non-empty). Finally define the
leaf height lhpP q of a path P as the dimension of tP u. As with trees, we will omit the t´u

notation and use a branch as a variable when it is clear.

For every locally maximal variable, there is some branch representing it, though not
necessarily a unique one. Recall Definition 10 of trunk height for a tree. We now give
one of the central definitions of the paper, which was also given an informal exposition in
the introduction, and illustrated with Fig. 1.

Definition 18 (Inserted Tree). Given trees S and T , and a branch P of S such that
thpT q ě bhpP q, we define the inserted tree S !P T by induction on the length of P :

16

• Suppose P “ rks and S “ rS1, . . . , Sk, . . . , Sns. Then:

S !P T “ rS1, . . . , Sk´1s `̀ T `̀ rSk`1, . . . , Sns

• Suppose P has length greater than 1 so that P “ k :: P 1 and again S “

rS1, . . . , Sk, . . . , Sns. We note that P 1 is a branch of Sk and by the condition
on trunk height of T we have T “ rT1s. Then:

S !P T “ rS1, . . . , Sk´1, Sk !P 1 T1, Sk`1, . . . , Sns

We draw attention to the condition of the trunk height of T being at least the branch
height of P , which is necessary for the induction to proceed.

We now proceed to define the interior and exterior substitutions, which will be done
using the diagrammatic notation introduced in Section 2.4.

Definition 19 (Interior Substitution). Given S, T trees, with P a branch of S with
thpT q ě bhpP q we define the interior substitution ιS,P,T : T Ñ S !P T by induction on P .

• When P “ rks, S “ rS1, . . . , Sk, . . . , Sns we get:

rS1, . . . , Sk´1s _ T _ rSk`1, . . . , Sns

T

id

• When P “ k :: P 1, S “ rS1, . . . , Sk, . . . , Sns we get:

rS1, . . . , Sk´1s _ ΣSk !P 1 T1 _ rSk`1, . . . , Sns

ΣT1

ΣιSk,P 1,T1

We may drop the subscripts on ι when they are easily inferred.

Definition 20 (Exterior Substitution). Given S, T trees, with P a branch of S with
thpT q ě bhpP q we define the exterior substitution κS,P,T : S Ñ S !P T by induction on
P .

• When P “ rks, S “ rS1, . . . , Sk, . . . , Sns we get:

rS1, . . . , Sk´1s _ T _ rSk`1, . . . , Sns

rS1, . . . , Sk´1s _ ΣSk _ rSk`1, . . . , Sns

tUn
T , Cn

T uid id

Where we note that by the condition of P being a branch we have that Sk is linear
and so ΣtSku is a disc.

• When P “ k :: P 1, S “ rS1, . . . , Sk, . . . , Sns we get:

rS1, . . . , Sk´1s _ ΣSk !P 1 T1 _ rSk`1, . . . , Sns

rS1, . . . , Sk´1s _ ΣSk _ rSk`1, . . . , Sns

ΣκSk,P 1,T1id id

17

Again the subscripts on κ may be dropped where they can be inferred.

Lastly we define the inserted substitution.

Definition 21 (Inserted Substitution). Given S, T trees, with P a branch of S with
thpT q ě bhpP q and σ : S Ñ Γ, τ : T Ñ Γ, we define the inserted substitution σ !P τ :
S !P T Ñ Γ. Without loss of generality, we can assume that σ and τ are given by labellings
L,M of S and T , and that we need to provide a labelling L!P M : S !P T Ñ Γ. Let

S “ rS1, . . . , Sns L “ s0
L1s1 ¨ ¨ ¨ Lnsn

and then proceed by induction on P .

• Let P “ rks, and

T “ rT1, . . . , Tms M “ t0
M1t1 ¨ ¨ ¨ Mmtm

Then define L!rks M to be:

s0
L1s1 ¨ ¨ ¨ Lk´1t0

M1t1 ¨ ¨ ¨ Mmtm
Lk`1sk`1

¨ ¨ ¨ Lnsn

• Suppose P “ k :: P 1 so that

T “ rT1s M “ t0
M1t1

Define L!P M as:

s0
L1s1 ¨ ¨ ¨ Lk´1t0

pLk !P 1 M1q
t1
Lk`1sk`1

¨ ¨ ¨ Lnsn

The inserted substitution is then defined as the substitution corresponding to this labelling.

As we need a lot of data to perform an insertion, we will package it up to avoid
repetition.

Definition 22. An insertion point is a triple pS, P, T q where S and T are trees and P
is a branch of S with bhpP q ď thpT q. An insertion redex is a sextuple pS, P, T,Γ, σ, τq

where pS, P, T q is an insertion point, σ : S Ñ Γ and τ : T Ñ Γ are substitutions, and

P JσK ” C lhpP q

T JτK.

3.2 Properties of Insertion

Here all typing judgements are taken with respect to a tame set of rules R which are
taken as implicit. We will state various properties of the constructions in the previous
section in any such CattR.

Proposition 23. If pS, P, T q is an insertion point then:

S !P T $ ι : T S !P T $ κ : S

If further pS, P, T,Γ, σ, τq is an insertion redex then:

Γ $ σ !P τ : S !P T

18

Proof. All substitutions are built from standard constructions, and their typing follows
from the typing of these constructions, working by induction on P . The equality P JσK ”

C lhpP q

T JτK is needed to show that the generated labelling is valid.

Lemma 24. For any insertion redex pS, P, T,Γ, σ, τq:

Σpσ !P τq ” Σσ !0::P Στ

Given another substitution µ : Γ Ñ ∆, we have:

pσ !P τq ˝ µ ” pσ ˝ µq !P pτ ˝ µq

and the constructions above are well defined.

We next state the required conditions for the universal property of insertion. All of
these can be proven by induction on P .

Lemma 25. For all insertion points pS, P, T q, the terms P JκK and C lhpP q

T JιK are syn-
tactically equal. If we extend to an insertion redex pS, P, T,Γ, σ, τq then the following
hold:

ιS,P,T ˝ pσ !P τq “ τ

κS,P,T ˝ pσ !P τq “ σ

This leads us to the following theorem, proving that insertion arises as a pushout.

Theorem 26. The following diagram is a pushout in CattR for any insertion point
pS, P, T q, where A is the type of tP u:

Dn S

T S !P T

κ

ι

tA,P u

tU lhpP q

Θ ,ClhpP q

Θ u {

Proof. All that is left to show after Lemma 25 is that the inserted substitution is the
unique substitution satisfying the commutativity conditions. This is done by realising
that each variable of S !P T is either the image of a variable in S or T .

3.3 The Type Theory Cattsua

All the ingredients are now in place to define our principal type theory Cattsua. We first
formally define the insertion rule.

Definition 27 (Insertion). The insertion rule says that the following equation holds:

Γ $ coh pS : Aqrσs “ coh pS !P T : AJκKqrσ !P τ s

for all insertion redexes pS, P, T,Γ, σ, τq and types A : TypeS , where C lhpP q

T is either an
unbiased composite or an identity, and coh pS : Aqrσs is not an identity.

19

We now define the set of rules sua to be the union of insertion, disc removal, and
endo-coherence removal, and let Cattsua be the type theory generated from these rules. As
disc removal and endo-coherence removal satisfy all conditions, it remains to check that
insertion also does. The lifting condition is trivial, as insertion does not interact with
the ambient context the terms exist in. Substitution and suspension conditions follow
quickly from Lemma 24 and some computation. This leaves support and conversion.

For support we appeal to the proof strategy detailed in Section 2.5. Suppose

Γ $ coh pS : Aqrσs “ coh pS !P T : AJκKqrσ !P τ s

is a valid insertion under the insertion rule, and further that Γ $s coh pS : Aqrσs : B
(the left hand side of the rule is well typed in CattRs). Then, Lemma 25 holds in CattRs

which implies supppκ ˝ pσ !P τqq “ supppσq, and since κ is full (its support is the entire
context), it follows that supppσ !P τq “ supppσq, as required.

Lastly, conversion follows from Proposition 23. It is also necessary to show that the
support conditions hold in the generated term, which is done in the formalisation.

The following two properties hold in Cattsua. Their proofs appear later in the paper
in Section 4.1, after more properties of insertion have been proved.

Theorem 28. The following equality holds for any insertion redex pS, P, T,Γ, σ, τq:

Γ $ coh pS : Aqrσs “ coh pS !P T : AJκKqrσ !P τ s

even when P JσK ” C lhpP q

T is not an unbiased composite or identity.

Proof. Follows immediately from Lemma 60.

Theorem 29. An insertion into an unbiased coherence is equal to an unbiased coherence.
More specifically:

Γ $ coh pS !P T : Un
S JκKqrσ !P τ s “ Cn

S !P T Jσ !P τK

for any insertion redex pS, P, T,Γ, σ, τq and n ě dimpT q.

Proof. Immediately follows from Lemma 59.

4 A Decision Procedure for Cattsua

We show that equality for Cattsua is decidable and hence type checking is also decidable.
This gives an algorithm for checking validity of Cattsua terms, which we have implemented
and discuss in Section 5.

Decidability is shown providing a reduction relation ⇝, such that the symmetric
transitive reflexive closure of ⇝ agrees with equality on the set of valid terms. It is also
shown that ⇝ is terminating, meaning for each term t we can generate a normal form
Nptq, and confluent which implies uniqueness of normal forms. Therefore, equality of two
terms s and t can be checking syntactic equality of their normal forms Npsq and Nptq.

20

4.1 Reduction for Cattsua

To define a reduction for Cattsua, we define a reduction relation on terms, types and
substitutions by mutual induction, and write these reductions Γ $ ⇝ with appropriate
pieces of syntax replacing the underscores. The rules for the single step reduction are
given in Fig. 9. We write the reflexive transitive closure Γ $ ⇝˚ . It is a simple
manipulation to show that definitional equality on Cattsua is the symmetric transitive
reflexive closure of single step reduction.

∆ $ A⇝ B

Γ $ coh p∆ : Aqrσs⇝ coh p∆ : Bqrσs
Cell

Γ $ σ ⇝ τ

Γ $ coh p∆ : Aqrσs “ coh p∆ : Aqrτ s
Arg

Γ $ s⇝ s1

Γ $ s ÑA t⇝ s1 ÑA t

Γ $ A⇝ A1

Γ $ s ÑA t⇝ s ÑA1 t

Γ $ t⇝ t1

Γ $ s ÑA t⇝ s ÑA t1

Γ $ σ ⇝ τ

Γ $ xσ, x ÞÑ sy⇝ xτ, x ÞÑ sy

Γ $ s⇝ t

Γ $ xσ, x ÞÑ sy⇝ xσ, x ÞÑ ty

pΓ, s, tq P sua

Γ $ s⇝ t

Figure 9: One-step Reduction Rules

Due to the conversion condition, if we start with a well typed term, then any term
arising as a reduction of it will also be well typed. In practice this means that we rarely
need to check typing conditions when reducing a term, and as such we will omit the
context Γ and just write s⇝ t or s⇝˚ t, when we know s is well-typed. By inspecting
the proof that sua is tame, in particular noting that the proofs do not use the symmetry
of equality, we can deduce that ⇝˚ respects context extension and substitution.

Termination. We show strong termination for the reduction, demonstrating that there
are no infinite reduction sequences. Our strategy is to assign an ordinal number to each
term, show that each single step reduction reduces the associated ordinal number, and
therefore deduce that any infinite reduction sequence of the form above would imply the
existence of an infinite chain of ordinials, which can not exist due to the well-foundedness
of ordinal numbers. We call the ordinal number associated to each term its syntactic
complexity.

To define syntactic complexity, we will need to use ordinal numbers up to ωω. We will
also need a construction known as the natural sum of ordinals, α#β, which is associative,
commutative, and strictly monotone in both of its arguments [11].

Definition 30. For all terms t and substitutions σ, the syntactic complexity scptq and
scpσq are mutually defined as follows:

• For substitutions we have:

scpxt0, . . . , tnyq “

n

#
i“0

ti

• For terms, we have scpxq “ 0 for variables x.

21

If coh p∆ : Aqrσs is an identity then:

scpcoh p∆ : Aqrσsq “ ωdimpAq # scpσq

Otherwise:

scpcoh p∆ : Aqrσsq “ 2ωdimpAq # scpσq

The motivation for syntactic complexity is as follows. We would like to show that each
reduction reduces the depth of the syntax tree, but this doesn’t quite work, as reductions
like insertion can add new constructions into the reduced term. The necessary insight is
that these constructions only add complexity in a lower dimension than the term being
reduced. Syntactic complexity measures the depth of the syntax at each dimension, where
removing a coherence of dimension n reduces the complexity, even if we add arbitrary
complexity at lower dimensions. Syntactic complexity also treats identities in a special
way, as these play a special role in blocking reduction in the theory.

The syntactic complexity does not account for the type in a coherence, as this is
difficult to encode. Instead of showing that all reductions reduce syntactic complexity, we
instead show that all reduction which are not “cell reductions” (reductions that have the
rule marked “Cell” in their derivation) reduce syntactic complexity and deduce that a
hypothetical infinite reduction sequence must only consist of cell reductions after a finite
number of steps, and then appeal to an induction on dimension.

Lemma 31. The following inequality:

scpσ !P τq ă scpσq

holds for any insertion redex pS, P, T,Γ, σ, τq.

Proof. We begin by noting that:

scpσq “ #
x‰tP u

scpxJσKq # scpP JσKq

“ #
x‰tP u

scpxJσKq # scpC lhpP q

T JτKq

ą #
x‰tP u

scpxJσKq # scpτq

Further we extend the notion of syntactic depth to labels in the obvious way and therefore
show that for all labels L and M with appropriate conditions that:

scpL!P Mq ď #
x‰tP u

scpxJLKq # scpMq

which we do by induction on P . If P “ rks then it is clear that L!P M contains all the
terms of M and some of the terms of L, and crucially not tP uJLK. If instead P “ k :: P 1

then by induction hypothesis we get that:

scpLk !P 1 M1q ď #
x‰tP 1u

scpxJL1Kq # scpM1q

It is then clear again that L!P M contains terms from M and terms of L which are not
P JLK, and so the inequality holds.

22

Theorem 32. One-step reductions that do not use the cell rule reduce syntactic complexity.
Those that do use the cell rule do not change the complexity.

Proof. We wish to show that for all reductions s⇝ t, and σ ⇝ τ that scptq ă scpsq, and
scpτq ă scpσq respectively. We proceed by induction on the derivation of the reduction,
noting that all cases for structural rules follow from strict monotonicity of the natural
sum. This leaves us with the following cases.

Disc removal. Suppose Cn
DnJtA, suK ⇝ s is by disc removal. By a simple induction,

scptA, suq ě scpsq and so:

scpsq ď scptA, suq ă scpCn
DnJtA, suKq

Endo-coherence removal. Let coh p∆ : s ÑA sqrσs ⇝ 1tAJσK,sJσKu be a reduction by
endo-coherence removal. Then:

scp1tAJσK,sJσKuq “ ω1`dimpAq # scptAJσK, sJσKuq

ă ω1`dimpAq # ω1`dimpAq

ď scpcoh p∆ : s ÑA sqrσsq

Here the second line holds as dimpsq “ 1 ` dimpAq and the last line holds as coh p∆ :
s ÑA sqrσs cannot be an identity by assumption.

Insertion. Let pS, P, T,Γ, σ, τq be an insertion redex so that:

coh pS : Aqrσs⇝ coh pS !P T : AJκKqrσ !P τ s

by insertion. This implies that coh pS : Aqrσs is not an identity. Then:

scpcoh pS !P T : AJκKqrσ !P τ sq

ď 2ωdimpAq # scpσ !P τq

ă 2ωdimpAq # scpσq

ď coh pS : Aqrσs

A simple induction shows that reductions using the cell rule do not modify the
complexity, as when the cell rule is used, we modify a type that does not contribute to
the syntactic complexity.

Corollary 33. Reduction for Cattsua is strongly terminating.

Proof. We proceed by induction on the dimension. Suppose there is an infinite reduction
sequence, starting with a dimension k term:

s0 ⇝ s1 ⇝ s2 ⇝ ¨ ¨ ¨

Then by Theorem 32, only finitely many of these reductions do not use the cell rule, and
so there is an n such that:

sn ⇝ sn`1 ⇝ ¨ ¨ ¨

are all cell reductions. Each of these reductions reduces one of finitely many subterms of
sn, and each of these subterms has dimension less than k, so by inductive hypothesis,
none of these subterms can be reduced an infinitely often, contradicting the existence of
an infinite reduction sequence.

23

Confluence. To prove confluence, we take the standard approach of proving local conflu-
ence, which says that all single step reductions of a term can be reduced (in any number
of steps) to a common reduct. This implies full confluence (that multi-step reduction
has the diamond property) and uniqueness of normal forms when combined with strong
termination.

Theorem 34. Reduction is locally confluent: if a is valid with a⇝ b and a⇝ c, then
there exists some d with b⇝˚ d and c⇝˚ d.

Before beginning the proof of this theorem, we give a higher level explanation of some of
the difficulties of the proof, and the strategies we employ to overcome them.

When we examine simpler reductions such as disc removal, endo-coherence removal, or
even reductions like pruning from Cattsu, we see that if there is a redex for that reduction,
then other reductions do not “break” the redex. For example, a redex for pruning is a
coherence term with an identity as a locally maximal argument. In Cattsu, identities are
head normal forms, and so no matter how many reductions we apply to this argument,
the argument remains an identity, and the pruning redex remains valid. Similarly, cases
for disc removal tend to be easy to handle, as discs are also head normal forms. An
endo-coherence removal redex can be broken, however in every case this can be easily
fixed by application of further reductions.

With insertion the situation is very different. Insertion can occur when a locally
maximal argument is an unbiased composite, and in Cattsua unbiased composites are not
in general normal forms. Indeed, a biased composite such as pf ¨ gq ¨ h has an unbiased
composite at its heads. Furthermore, unbiased composites can reduce to terms which are
no longer unbiased composites and are therefore no longer insertable, meaning that more
complicated arguments are required to establish confluence.

The critical pair that demonstrates this most clearly is a coherence with an insertable
argument, where this argument is itself a coherence with an insertable argument. The
immediate problem is that performing the insertion on the inner term can cause it to no
longer to be an unbiased coherence, as applying the exterior substitution to an unbiased
type does not in general return an unbiased type. In order to recover the redex for the
outer insertion, we need to use a directed version of Theorem 29, which is not a syntactic
equality, and can involve applying more insertion reductions to return the term to an
unbiased coherence.

This critical pair raises a second problem. Once we perform the inner insertion and
then reduce the resulting term to yield an unbiased coherence once again, there is no
guarantee that the resulting term is either a composite or identity. To proceed in this
situation we use a directed version of Theorem 28, which shows that in the case that the
term does not become a composite or identity, it must become an endo-coherence, thus
allowing an endo-coherence removal step, followed by insertion of the resulting identity.

One may consider restructuring the theory to avoid dealing with this case, for example
by allowing insertions of all unbiased coherences. However, taking this path would
introduce a new critical pair given by an insertable argument that can reduce by endo-
coherence removal, which presents new problems which we believe are at least as hard to
solve.

Even after proving that these terms admit these reductions, we still need to show
that the resulting terms, which can be by complex after applying multiple reductions,

24

are indeed equal, closing the reduction square. This is an involved procedure, and as a
result the confluence proof is rather lengthy.

We now start to state the various lemmas and definitions needed to show confluence.
All lemmas are formalized in the accompanying Agda formalisation, which is linked in
the introduction, and for this reason we omit proofs here of some straightforward lemmas
which consist of a large case analysis.

We begin by defining some refined versions of equality, which help to prove confluence.

Definition 35. Define the n-bounded equality relation as follows: Let Γ $ s “n t when
Γ $ s “ t with a derivation that only uses rules p∆, s1, t1q P R when dimps1q ă n. We
further define maximal equality by letting Γ $ σ ”max τ when substitutions σ and τ are
syntactically equal when applied to locally maximal variables, and Γ $ σ “max τ when
they are definitionally equal on all locally maximal variables.

It is clear that bounded equality implies equality. It is also true that maximal equality
(of either variety) between valid substitutions implies equality due to the conversion.
Further, we have that any equal terms of dimension n are n-bounded equal and so if
Γ $ σ ”max τ then it follows that Γ $ σ “dimpσq τ . Lastly, if Γ $ σ ”max τ and both σ
and τ are valid in CattH then it follows that σ ” τ .

Lemma 36. The terms P JκS,P,T K and C lhpP q

T JιK are syntactically equal for any insertion
point pS, P, T q.

Lemma 37. For insertion redex pS, P, T,Γ, σ, τq, the following hold:

ιS,P,T ˝ pσ !P τq ” τ

κS,P,T ˝ pσ !P τq ”max σ

These imply the equality results from Section 3.2.

Lemma 38. Suppose pS, P, T q and pS,Q, T q are insertion points with tP u ” tQu. Then
S !P T “ S !Q T and κS,P,T ”max κS,Q,T . If we further have σ : S Ñ Γ and τ : T Ñ Γ,
then σ !P τ ”max σ !Q τ .

Definition 39. Let pS, P, T q be an insertion point and Q be a branch of S such that
tP u ‰ tQu. Then we can define a new branch Q!P T of S !P T with bhpQ!P T q “ bhpQq

and tQ!P T u ” QJκS,P,T K. Intuitively this branch refers to the same part of S, and is
unaffected by T being inserted in.

Definition 40. We define a variant of the inserted substitution, and write it σ !1
P τ .

Whereas the original uses as many terms from τ as possible, the variant uses as many
terms from σ as possible. More precisely, we define L!1

rks M to be:

s0
L1s1 ¨ ¨ ¨ Lk´1sk

M1t2 ¨ ¨ ¨ Mmsk`1
Lk`1sk`1

¨ ¨ ¨ Lnsn

and L!1
k::P 1 M as:

s0
L1s1 ¨ ¨ ¨ Lk´1sk

pLk !P 1 M1q
sk`1

Lk`1sk`1
¨ ¨ ¨ Lnsn

where the terms in bold have been modified from the original definition. In the edge case
where M “ [], we arbitrarily use sk instead of sk`1 for the definition of L!1

rks M .

25

Lemma 41. The following equality holds

σ !P τ “dimpSq σ !1
P τ

for any insertion redex pS, P, T,Γ, σ, τq.

Lemma 42. Let pS, P, T q and pS,Q,Uq be insertion points such that tP u ‰ tQu. Then
we have:

pS !P T q !Q !P T U “ pS !Q Uq !P !Q U T

κS,P,T ˝ κS !P T,Q !P T,U ”max κS,Q,U ˝ κS !Q U,P !Q U,T

Further
pσ !P τq !1

Q !P T µ ”max pσ !Q µq !1
P !Q U τ

for any insertion redexes pS, P, T,Γ, σ, τq and pS, P, T,Γ, σ, µq.

Lemma 43. The following reduction holds, even when the left-hand side is an identity:

coh pΓ : s ÑA sqrσs⇝˚ 1Jts,Au ˝ σK

Proof. If coh pΓ : s ÑA sqrσs is not an identity then we can reduce by endo-coherence
removal. Otherwise we have Γ “ Dn for some n, s ” dn, and A ” Un

Dn , and so:

1Jts,Au ˝ σK ” 1Jtdn,Un
Dnu ˝ σK ” 1JσK

It follows that the reduction is trivial.

Lemma 44. Let T be a tree, n ě dimpT q, and P a branch of Dn with bhpP q ď thpT q.
Then Dn !P T “ T and ιDn,P,T ” id. Suppose further that σ : Dn Ñ Γ and τ : T Ñ Γ.
Then σ !P τ ”max τ .

Lemma 45. Let S be a tree, and P a branch of S. Then we get that S !P DlhpP q “ S
and κS,P,DlhpP q “max id. Further

σ !P τ ”max σ

if pS, P,DlhpP q,Γ, σ, τq is an insertion redex.

Lemma 46. Let n P N and suppose S and T are trees, and P a branch of S such that:

• bhpP q ď thpT q

• n ă lhpP q

• n ď thpT q

• lhpP q ě dimpT q

Then BnpSq “ BnpS !P T q and for ϵ P t´,`u:

δϵnpSq ˝ κS,P,T ”max δϵdpS !P T q

Definition 47. Let n P N, and suppose S is a tree with branch P with n ą bhpP q. Then
we can define a new branch Bn

P of Bn
S given by the same list as P .

26

Lemma 48. Let n P N and suppose S and T are trees, and P a branch of S such that:

• bhpP q ď thpT q

• lhpP q ě dimpT q

• one of the following holds:

1. n ą thpT q and n ď lhpP q

2. n ě lhpP q

Then Bn
S !Bn

P
Bn
T “ Bn

S !P T and:

δϵ,nS ˝ κS,P,T ”max κBn
S ,Bn

P ,Bn
T

˝ δϵ,nS !P T

for ϵ P t´,`u.

Lemma 49. For all n and S, Cn
S ⇝

˚ T n
S .

Proof. The only case in which Cn
S ‰ T n

S is when S “ Dn, in which case a single disc
removal gives the required reduction.

Lemma 50. Given σ ⇝˚ σ1 and τ ⇝˚ τ 1, then if σ !P τ is defined, we have:

σ !P τ ⇝˚ σ1 !P τ 1

Lemma 51. Let pS, P, T q be an insertion point. Then:

κS,P,T !P ιS,P,T ” id

Lemma 52. If P is a branch of S, and σ, σ1 : S Ñ Γ are substitutions differing only on
tP u, then the following holds for insertion redex pS, P, T,Γ, σ, τq:

σ !P τ ” σ1 !P τ

Lemma 53. Let pS, P, T q be an insertion point. Further assume S is not linear. Then
thpS !P T q ě thpSq.

Definition 54. Let pS, P, T q be an insertion point. Further assume T is not linear and
has a branch Q. Then there is a branch S !P Q of S !P T with the same height as Q.
The new branch points to the same place as Q, except in the copy of T which exists in
S !P T .

Lemma 55. Let pS, P, T q be an insertion point. Further assume T is not linear and has
a branch Q. Then tS !P Qu ” QJιS,P,T K. Further if pT,Q,Uq is an insertion point, then

S !P pT !Q Uq “ pS !P T q !S !P Q U

and:
κS,P,T !Q U “max κS,P,T ˝ κS !P T,S !P Q,U

Further
σ !P pτ !Q µq ”max pσ !P τq !S !P Q µ

for any σ : S Ñ Γ, τ : T Ñ Γ, and µ : U Ñ Γ

27

Definition 56. For tree S and branch P , let

S � P “ S !P DlhpP q´1

and let πP “ κS,P,DlhpP q´1 .

Definition 57. Given S and branch P , if 2 ` bhpP q ď lhpP q, then there is a branch P 1

of S � P , given by the same list as P .

Lemma 58. If S has branch P with 2`bhpP q ď lhpP q, then tP 1u ” dlhpP q´1JιS,P,DlhpP q´1K.
If pS, P, T q is an insertion point, we further get that pS � P q !P 1 T “ S !P T and
πP ˝ κS�P,P 1,T “max κS,P,T . If we are also given σ : S Ñ Γ and τ : T Ñ Γ then:

pσ !P ptT lhpP q´1
T ,U lhpP q´1

T u ˝ τqq !P 1 τ ”max σ !P τ

Now, two larger metatheorems about Cattsua can be proven. The first implies that
the term obtained by inserting into an unbiased coherence reduces back to an unbiased
coherence on the inserted context. Despite the restriction in the theory of only allowing
unbiased composites and identities to be inserted, the second proves that the insertion of
any unbiased coherence can be simulated.

Lemma 59. Let pS, P, T q be an insertion point. Then for n ď dimpSq`1, Un
S JκS,P,T K⇝˚

Un
S !P T and if dimpSq “ n then T n

S JκS,P,T K⇝˚ TS !P T .

Proof. We proceed by induction on n, starting with the statement for types. If n “ 0
then both unbiased types are ‹, so we are done. Otherwise we have:

U1`n
S JκS,P,T K ” T n

Bn
S
Jδ´,n

S ˝ κS,P,T K

ÑUn
S JκS,P,T K

T n
Bn
S
Jδ`,n

S ˝ κS,P,T K

and

U1`n
S !P T ” T n

Bn
S !P T

Jδ´,n
S !P T K

ÑUn
S !P T

T n
Bn
S !P T

Jδ`,n
S !P T K

By inductive hypothesis: Un
S JκS,P,T K⇝˚ Un

S !P T , and so we need to show that:

T n
Bn
S
Jδϵ,nS ˝ κS,P,T K⇝˚ T n

Bn
S !P T

Jδϵ,nS !P T K

We now note that either the conditions for Lemma 46 or Lemma 48 must hold. If
conditions for Lemma 46 hold then (as everything is well typed in CattH) we get that the
required reduction is trivial. Therefore we focus on the second case. Here we get from
Lemma 48 that:

T n
Bn
S
Jδϵ,nS ˝ κS,P,T K ” T n

Bn
S
JκBn

S ,Bn
P ,Bn

T
˝ δϵ,nS !P T K

Then by the induction hypothesis for terms since dimpBn
Sq “ n when n ď dimpSq, we get

the required reduction.

28

Now we move on to the case for terms. If T n
S is a variable, then we must have that

S is linear and so S “ Dn. We must also have in this case that T n
S “ tP u. Then by

Lemma 36, T n
S JκS,P,T K ” Cn

T JιS,P,T K and then by Lemmas 44 and 49 this reduces to
T n
S !P T as required. If T n

S is not a variable, then T n
S ” Cn

S and as n “ dimpSq, Cn
S is

not an identity. By Lemma 36 and other assumptions we get that Cn
SJκS,P,T K admits an

insertion along branching point P and so:

T n
S JκS,P,T K

” Cn
SJκS,P,T K

⇝ coh pS !P T : Un
S JκS,P,T KqrκS,P,T !P ιS,P,T s

” coh pS !P T : Un
S JκS,P,T Kqrids

⇝˚ coh pS !P T : Un
S !P T qrids

” Cn
S !P T

⇝˚ T n
S !P T

With the second equivalence coming from Lemma 51, the second reduction coming from
inductive hypothesis (which is well founded as the proof for types only uses the proof for
terms on strictly lower values of n), and the last reduction coming from Lemma 49.

Lemma 60. Let pS, P, T q be an insertion point and let lhpP q ě dimpT q. Further suppose

that a ” coh pS : Aqrσs is not an identity and P JσK ” C lhpP q

T JτK (which may or may not
be an unbiased composite or identity). Then there exists a term s with:

a⇝˚ s “dim a coh pS !P T : AJκS,P,T Kqrσ !P τ s

In other words it is possible to insert terms that are not unbiased composites or identities,
up to dimension bounded equality.

Proof. We proceed by induction on lhpP q´dimpT q. If lhpP q´dimpT q “ 0 then C lhpP q

T is a
composite and so we can perform the usual insertion. We now assume that lhpP q ą dimpT q.

We may also assume without loss of generality that C lhpP q

T is not an identity, as otherwise
it would be immediately insertable. This allows us to perform endo-coherence removal to
get:

C lhpP q

T ⇝ 1JtT lhpP q´1
T ,U lhpP q´1

T u ˝ τK

Now suppose a ” coh pS : Aqrσs and b ” coh pS : Aqrσ1s where σ1 is the result of applying
the above reduction to the appropriate term of σ. Since P Jσ1K is now an identity it can
be inserted to get b⇝ c where:

c ” coh pS � P : AJπP Kqrσ1 !P ptT lhpP q´1
T ,U lhpP q´1

T u ˝ τqs

We now wish to show that 2`bhpP q ď lhpP q so that P 1 exists as a branch of S�P . Since
we always have 1`bhpP q ď lhpP q, we consider the case where 1`bhpP q “ lhpP q. We know
that bhpP q ď dimpT q ď lhpP q and so must be equal to one of the two. If dimpT q “ lhpP q

then C lhpP q

T is an unbiased composite. If dimpT q “ bhpP q then thpT q “ dimpT q and so T

is linear. However this makes C lhpP q

T an identity. Either case is a contradiction and so
2 ` bhpP q ď lhpP q and so P 1 is a branch of S � P .

29

By Lemmas 25 and 58, we now have:

P 1Jσ1 !P ptT lhpP q´1
T ,U lhpP q´1

T u ˝ τqK

” dlhpP q´1JιS,P,DlhpP q´1 ˝ pσ1 !P ptT lhpP q´1
T ,U lhpP q´1

T u ˝ τqqK

” dlhpP q´1JtT lhpP q´1
T ,U lhpP q´1

T u ˝ τK

” T lhpP q´1
T JτK

” C lhpP q´1
T JτK

with the last equivalence holding as if T lhpP q´1
T was a variable then C lhpP q

T would be an
identity. As lhpP 1q ´ dimpT q “ lhpP q ´ dimpT q ´ 1 we can use the induction hypothesis
to get that c⇝ d and:

d “dimpaq coh ppS � P q !P 1 T : AJπP ˝ κS�P,P 1,T Kqr

pσ1 !P ptT lhpP q´1
T ,U lhpP q´1

T u ˝ τqq !P 1 τ s

By Lemmas 52 and 58,

d “dimpaq coh pS !P T : AJκS,P,T Kqrσ !P τ s

which completes the proof as a⇝˚ d.

With the above the lemmas we can now recall Theorem 34 and give a proof.

Theorem 34. Reduction is locally confluent: if a is valid with a⇝ b and a⇝ c, then
there exists some d with b⇝˚ d and c⇝˚ d.

Proof. We proceed by simultaneous induction on subterms and dimension. Suppose a⇝ b
and a⇝ c. It is sufficient to show that b⇝˚ b1, c⇝˚ c1, and that b1 “dimpaq c

1, as then
by induction on dimension we have that b1 and c1 have a common reduct, which we can
obtain for example by reducing both terms to normal form. We now split on cases on the
reductions. We will ignore cases where both reductions are the same and those which are
symmetric to a case which has already been covered. We split first on a⇝ b.

Insertion. Let a ” coh pS : Aqrσs be not an identity, and pS, P, T,Γ, σ, τq be an insertion

redex with C lhpP q

T JτK an unbiased composite or identity. We then have:

b ” coh pS !P T : AJκS,P,T Kqrσ !P τ s

We consider the possible cases for the second reduction.

Insertion. Suppose a⇝ c is also an insertion, along a branch Q of S. We now split on
whether tP u “ tQu. First suppose tP u “ tQu; then by Lemma 38, we have b “dimpaq c.

Suppose now that tP u ‰ tQu, and that QJσK ” C lhpQq

U JµK, such that

c ” coh pS !Q U : AJκS,Q,U Kqrσ !Q µs

We now want b and c to further reduce as follows:

b⇝ b1 ” coh ppS !P T q !Q !P T U :

30

AJκS,P,T ˝ κS !P T,Q !P T,U Kqrpσ !P τq !Q !P T µs

c⇝ c1 ” coh ppS !Q Uq !P !Q U T :

AJκS,Q,U ˝ κS !Q U,P !Q U,T Kqrpσ !Q µq !P !Q U τ s

We will show that the first reduction is valid and the other will hold by symmetry. We
need b to not be an identity. First suppose that a is typed by the coherence rule. Then if
A ” s ÑB t we must have supppsq “ supppSq. However S is certainly not linear, as it
has two distinct leaves. Therefore s cannot be a variable and so sJκS,P,T K is also not a
variable, making b not an identity. Now suppose instead that a is a composite. Then, if
B´pSq is not linear, we can apply the same logic as before, and so S must have linear
height one less than its dimension. However, this means that both tP u and tQu are distinct
variables with the same dimension as the tree, and so dimpS !P T q “ dimpSq “ dimpaq

and so b cannot be an identity.
We also note:

Q!P T Jσ !P τK ” QJκKJσ !P τK
” QJσK

” C lhpQq

U JµK

” C lhpQ !P T q

U JµK

as required for the insertion, with the third equality coming from Lemma 37. Lastly the
trunk height condition is satisfied as bhpQq “ bhpQ!P T q.

Therefore both reductions are valid insertions and by Lemmas 41 and 42, b1 “dimpaq c
1.

Cell reduction. If A⇝ B and c ” coh pS : Bqrσs from cell reduction, then if c is not an
identity then it admits insertion to reduce to:

c1 ” coh pS !P T : BJκS,P,T Kqrσ !P τ s

As reduction is compatible with substitution, b also reduces to c1. If instead c was an
identity then

b ” coh pDn !P T : AJκS,P,T Kqrσ !P τ s

⇝ coh pDn !P T : Un`1
Dn JκS,P,T Kqrσ !P τ s

⇝˚ 1JtUn
Dn , dnu ˝ κS,P,T ˝ σ !P τK

“n`1 1JσK
” c

Where the second reduction is due to Lemma 43 and the equality is due to Lemma 25
and tUn

Dn , dnu being the identity substitution.

Disc removal. Suppose tSu “ Dn and c ” dnJσK with a ⇝ c by disc removal. Then
certainly tP u “ dn and so c ” dnJσK ” Cn

T JτK and in this case:

b ” coh pDn !P T : Un
DnJκDn,P,T Kqrσ !P τ s

By Lemmas 44 and 59, b “dimpaq c.

31

Endo-coherence removal:.Suppose A ” s ÑB s and a⇝ c by endo-coherence removal. In
this case c ” 1JtA, su ˝ σK and

b ” coh pS !P T : ps ÑB sqJκS,P,T Kqrσ !P τ s

which reduces by endo-coherence removal to:

b1 ” 1Jts,Au ˝ κS,P,T ˝ pσ !P τqK

Finally, by Lemma 25, we have that κS,P,T ˝ pσ !P τq “dimpSq σ and so b1 “dimpSq c and
since dimpSq ď dimpaq, we get b1 “dimpaq c as required.

Reduction of non-inserted argument. Suppose σ ⇝ σ1 along an argument which is not

tP u and c ” coh pS : Aqrσ1s. Then as P Jσ1K ” C lhpP q

T , an insertion can still be performed
on c to get:

c⇝ c1 ” coh pS !P T : AJκS,P,T Kqrσ1 !P τ s

By Lemma 50, b⇝˚ c1.

Argument reduction on inserted argument. Suppose τ ⇝ τ 1, and σ1 is σ but with the

argument for tP u replaced by coh pT : U lhpP q

T qrτ 1s, such that σ ⇝ σ1 and a⇝ c ” coh pS :
Aqrσ1s. Then c admits an insertion and reduces as follows:

c⇝ c1 ” coh pS !P T : AJκS,P,T Kqrσ1 !P τ 1s

By Lemma 50 we then have b⇝˚ c1.

Disc removal on inserted argument. If a ⇝ c is the result of reducing P JσK by disc
removal, then T must equal Dn (with n “ lhpP q) and c ” coh pS : Aqrσ1s where σ1 is σ
with the argument for tP u replaced with dnJτK. Further:

b ” coh pS !P Dn : AJκS,P,DnKqrσ !P τ s

By Lemma 52 we have σ !P τ ” σ1 !P τ , and furthermore by Lemma 45, S !P Dn “ S,
σ1 !P τ ”max σ1 and κS,P,Dn “ id. As dimpAJκS,P,DdKq ď dimpaq:

b ” coh pS : AJκS,P,DdKqrσ1 !P τ s

“dimpaq coh pS : Aqrσ1s

” c

Endo-coherence removal on inserted argument. The inserted argument must already be
an unbiased composite or identity, so cannot reduce by endo-coherence removal, hence
this case is vacuous.

Insertion on inserted argument. Suppose C lhpP q

T JτK admits an insertion, so that there is

branch Q of T with QJτK ” C lhpQq

U JµK and thpUq ě bhpQq. Then:

C lhpP q

T JτK⇝ coh pT !Q U : U lhpP q

T JκT,Q,U Kqrτ !Q µs

We then have c ” coh pS : Aqrσ1s where σ1 is σ with the reduction above applied. We can

conclude that C lhpP q

T must be a composite (i.e. not an identity) as otherwise the second
insertion would not be possible. We now split on whether T is linear.

32

If T is linear then it must equal DlhpP q. Following the disc removal/insertion confluence
case we see that the inner insertion is the same (up to bounded equality) as disc removal.
Further, following the insertion/argument disc removal case we get that performing a disc
removal on the insertable argument is the same (up to bounded equality) as performing
the outer insertion. We can therefore conclude that in this case b “dimpaq c as required.

We now turn to the case where T is not linear. By Lemma 59, U lhpP q

T JκT,Q,U K ⇝˚

U lhpP q

T !P Q and so C lhpP q

T JτK⇝˚ C lhpP q

T !Q U Jτ !Q µK. Let c1 be the term obtained by applying
this further reduction to the appropriate argument. Now by Lemma 53, we have that
thpT !Q Uq ě thpT q and so by Lemma 60, there is c1 ⇝˚ c2 with:

c2 “dimpaq coh pS !P pT !Q Uq :

AJκS,P,T !Q U Kqrσ !P pτ !Q µqs

We now examine how b reduces. As T is not linear, there is a branch S !P Q of S !P T
and we get the following by Lemmas 25 and 55:

S !P QJσ !P τK ” QJιS,P,T ˝ pσ !P τqK
” QJτK

” C lhpQq

U JµK

Since thpUq ě bhpQq “ bhpS !P Qq we can reduce b to b1 by insertion as follows:

b1 ” coh ppS !P T q !S !P Q U :

AJκS,P,T ˝ κS !P T,S !P Q,U Kqrpσ !P τq !S !P Q µs

and then by Lemma 55 we get b1 “dimpaq´1 c2 as required.

Cell reduction. If a ⇝ b is an instance of a cell reduction, then a ” coh pΓ : Aqrσs,
A⇝ B, and b ” coh pΓ : Bqrσs. We now split on the reduction a⇝ c.

Cell reduction.If a ⇝ c is the result of another cell reduction A ⇝ C then either the
reductions target different parts of the type in which case there is a common reduct D.
Otherwise we can appeal to the inductive hypothesis on subterms to find a common
reduct.

Disc removal. A is not in normal form, so a cannot have a disc as its head, hence a⇝ c
cannot be a disc removal.

Endo-coherence removal. Suppose A ” s ÑA1 s, and c ” 1JtA1, su ˝ σK. If the reduction
A ⇝ B arises from A1 ⇝ B1 then b immediately admits endo-coherence removal and
reduces as follows:

b1 ” 1JtB1, su ˝ σK

Then ts,A1u⇝ ts,B1u and so c⇝˚ b1.
Otherwise we either have the reduction s ÑA1 s⇝ s1 ÑA1 s or s ÑA1 s⇝ s ÑA1 s1.

In either case we have b⇝ coh pΓ : s1 ÑA1 s1qrσs and so by endo-coherence removal we
get the following:

b⇝˚ b1 ” 1JtA1, s1u ˝ σK

Hence we conclude c⇝˚ b1 as required.

33

Argument reduction. If c ” coh pΓ : Aqrσ1s arises from argument reduction σ ⇝ σ1 then
both b and c reduce to coh pΓ : Bqrσ1s by an argument reduction or cell reduction.

Disc removal. If a ⇝ b is a disc removal then a ” Cn
DnJσK for some n and b ” dnJσK.

Now a can not reduce by endo-coherence removal and disc removal is unique so the
only remaining case is an argument reduction. Suppose σ ⇝ σ1 and c ” Cn

DnJσ1K, which
reduces to c1 ” dnJσK1 by disc removal. If the reduction σ ⇝ σ1 is along dn then by
definition c⇝ c1, and otherwise c ” c1.

Endo-coherence removal. For a ⇝ b to be an instance of Endo-coherence removal
we must have a ” coh pΓ : s ÑA sqrσs and b ” 1JtA, su ˝ σK. The only case remaining
for the second reduction is argument reduction, as the rest follow by symmetry or the
uniqueness of endo-coherence removal. Therefore let σ ⇝ σ1 and c ” coh pΓ : s ÑA sqrσ1s

which reduces to c1 ” 1JtA, su ˝ σ1K by endo-coherence removal. As the transitive closure
of reduction respects substitution, tA, su ˝ σ ⇝˚ tA, su ˝ σ1 and so b⇝˚ c1.

Argument reduction. We suppose a ” coh pΓ : Aqrσs and b ” coh pΓ : Aqrσ1s where
σ1 is the result of reducing one argument x of σ. The only case left is that a ⇝ c is
also an argument insertion, and so c ” coh pΓ : Aqrσ2s with σ2 the result of reducing an
argument y of σ. If x does not equal y, then both σ1 and σ2 reduce to the substitution
where we apply both reductions. Otherwise if x “ y then by induction on subterms, σ1

and σ2 have a common reduct.

5 Implementation

We have provided an OCaml implementation of our type theory Cattsua, and here we
show some example use-cases. In each case we indicate the file name where the example
can be found. The source for the implementation can be found at:

https://github.com/ericfinster/catt.io/releases/tag/arxiv-sua

Triangle Equation. examples/monoidal.catt

In a monoidal category, the triangle equation expresses compatibility of the left unitor,
right unitor and associator:

pf ¨ idq ¨ g f ¨ pid ¨gq

f ¨ g

αf,id,g

f ¨ λgρf ¨ g

ñ

We express this in our implementation as follows:

coh triangle C (x(f)y(g)z) :

vert (assoc f (id y) g) (horiz (id1 f) (unitor-l g))

=> horiz (unitor-r f) (id1 g)

We then normalize it in the appropriate context:

normalize {C : Cat} {x :: C} {y :: C} (f :: x => y) {z :: C} (g :: y => z)

| triangle f g

34

https://github.com/ericfinster/catt.io/releases/tag/arxiv-sua

Since the triangle equation is entirely expressed in terms of associator and unitor structure,
we would expect it to normalize to the identity in our type theory, and this is what the
implementation returns.

Pentagon Equation. examples/monoidal.catt

We next consider the pentagon constraint, the second axiom family of a monoidal category:

ppf ¨ gq ¨ hq ¨ i

pf ¨ pg ¨ hqq ¨ i f ¨ ppg ¨ hq ¨ iq

f ¨ pg ¨ ph ¨ iqq

pf ¨ gq ¨ ph ¨ iq

αf,g,h ¨ i

αf,g¨h,i

f ¨ αg,h,i

αf ¨g,h,i αf,g,h¨i

ñ

We define this as follows in our implementation:

coh pentagon C (v(f)w(g)x(h)y(i)z) :

vert (assoc (comp f g) h i) (assoc f g (comp h i))

=> vert (horiz (assoc f g h) (id1 i))

(vert (assoc f (comp g h) i) (horiz (id1 f) (assoc g h i)))

Again employing the normalize command, we show that it reduces to the identity as
expected.

Syllepsis. examples/syllepsis.catt

The syllepsis is a 5-dimensional homotopy which expresses the fact that the overcrossing
and undercrossing are equivalent in 4-dimensional space:

“

It is a fundamental move from low-dimensional topology, and plays an essential role in
the homotopy groups of spheres. The bureaucracy of weak higher structures means that
it has long been recognized as difficult to describe directly in a formal way, given the
extensive use of interchangers, unitors and associators that are required to build it.

Two formal models for the syllepsis were presented at LICS 2022, one using homotopy
type theory [16], and an alternative using the type theory Cattsu [5]. The theory Cattsua
allows an even shorter representation of the syllepsis, purely in terms of interchanger
coherences.

35

References

[1] Michael Atiyah. Topological quantum field theories. Publications mathématiques de
l'IHÉS, 68(1):175–186, January 1988. doi:10.1007/bf02698547.

[2] Thibaut Benjamin and Samuel Mimram. Suspension et fonctorialité: Deux opérations
implicites utiles en catt. In Journées Francophones des Langages Applicatifs, 2019.
URL: https://hal.inria.fr/hal-01985195/, arXiv:hal-01985195.

[3] James Dolan. Private communication, 1996.

[4] Eric Finster and Samuel Mimram. A type-theoretical definition of weak ω-categories.
In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, 2017. arXiv:1706.02866, doi:10.1109/lics.2017.8005124.

[5] Eric Finster, David Reutter, Jamie Vicary, and Alex Rice. A type theory for strictly
unital 8-categories. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, 2022. arXiv:2007.08307, doi:10.1145/3531130.
3533363.

[6] R. Gordon, A. J. Power, and Ross Street. Coherence for tricategories. Mem. Amer.
Math. Soc., 117(558):vi+81, 1995. doi:10.1090/memo/0558.

[7] John W. Gray. Formal Category Theory: Adjointness for 2-Categories. Springer
Berlin Heidelberg, 1974. doi:10.1007/bfb0061280.

[8] Alexander Grothendieck. Pursuing stacks. Unpublished letter to Daniel Quillen,
1983. URL: https://thescrivener.github.io/PursuingStacks/.

[9] Martin Hofmann and Thomas Streicher. The groupoid model refutes uniqueness
of identity proofs. In Proceedings of the 9th Annual IEEE Symposium on Logic in
Computer Science, 1994. doi:10.1109/lics.1994.316071.

[10] Tom Leinster. Higher operads, higher categories. Number 298. Cambridge University
Press, 2004. arXiv:0305049.

[11] Paolo Lipparini. An infinite natural sum. Mathematical Logic Quarterly, 62(3):249–
257, 2016. doi:10.1002/malq.201500017.

[12] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009. arXiv:

math/0608040, doi:10.1515/9781400830558.

[13] Georges Maltsiniotis. Grothendieck 8-groupoids, and still another definition of
8-categories. 2010. arXiv:1009.2331.

[14] Christopher Schommer-Pries. The Classification of Two-Dimensional Extended
Topological Field Theories. PhD thesis, University of California, Berkeley, 2009.
arXiv:1112.1000.

[15] Carlos Simpson. Homotopy types of strict 3-groupoids. 1998. arXiv:math/9810059.

36

https://doi.org/10.1007/bf02698547
https://hal.inria.fr/hal-01985195/
https://arxiv.org/abs/hal-01985195
https://arxiv.org/abs/1706.02866
https://doi.org/10.1109/lics.2017.8005124
https://arxiv.org/abs/2007.08307
https://doi.org/10.1145/3531130.3533363
https://doi.org/10.1145/3531130.3533363
https://doi.org/10.1090/memo/0558
https://doi.org/10.1007/bfb0061280
https://thescrivener.github.io/PursuingStacks/
https://doi.org/10.1109/lics.1994.316071
https://arxiv.org/abs/0305049
https://doi.org/10.1002/malq.201500017
https://arxiv.org/abs/math/0608040
https://arxiv.org/abs/math/0608040
https://doi.org/10.1515/9781400830558
https://arxiv.org/abs/1009.2331
https://arxiv.org/abs/1112.1000
https://arxiv.org/abs/math/9810059

[16] Kristina Sojakova and GA Kavvos. Syllepsis in homotopy type theory. In Proceedings
of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, 2022.
arXiv:2107.14283.

[17] Ross Street. Oberwolfach notes on descent theory. 1995. URL: http://science.
mq.edu.au/~street/Descent.pdf.

[18] Ross Street. The petit topos of globular sets. Journal of Pure and Applied Algebra,
154(1-3):299–315, 2000.

[19] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

37

https://arxiv.org/abs/2107.14283
http://science.mq.edu.au/~street/Descent.pdf
http://science.mq.edu.au/~street/Descent.pdf
https://homotopytypetheory.org/book

	Introduction
	The Type Theory Catt
	Syntax for Catt
	Typing for Catt
	Constructions and Examples
	Trees
	Catt with Equality Rules

	Insertion
	The Insertion Construction
	Properties of Insertion
	The Type Theory Cattsua

	A Decision Procedure for Cattsua
	Reduction for Cattsua

	Implementation

