
A type-theoretic approach to semistrict
higher categories

Alexander Rice

Darwin College
18th April 2024

This thesis is submitted for the degree of Doctor of Philosophy

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the preface and specified in the text. It is not
substantially the same as any work that has already been submitted, or, is being concurrently
submitted, for any degree, diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the preface and specified in the
text. It does not exceed the prescribed word limit for the relevant Degree Committee.

Alexander Rice
18th April 2024

Abstract

A type-theoretic approach to semistrict higher categories

Alexander Rice

Weak ∞-categories are known to be more expressive than their strict counterparts, but are
more difficult to work with, as constructions in such a category involve the manipulation of
explicit coherence data. This motivates the search for definitions of semistrict∞-categories,
where some, but not all, of the operations have been strictified.

We introduce a general framework for adding definitional equality to the type theory Catt, a
type theory whose models correspond to globular weak∞-categories, which was introduced
by Finster and Mimram. Adding equality to this theory causes the models to exhibit semistrict
behaviour, trivialising some operations while leaving others weak. The framework consists
of a generalisation of Catt extended with an equality relation generated by an arbitrary set
of equality rules R, which we name CattR. We study this framework in detail, formalising
much of its metatheory in the proof assistant Agda, and studying how certain operations of
Catt behave in the presence of definitional equality.

The main contribution of this thesis is to introduce two type theories, Cattsu and Cattsua,
which are instances of this general framework. Cattsu, short for Catt with strict units, is a
variant of Cattwhere the unitor isomorphisms trivialise to identities. It is primarily generated
by a reduction we call pruning, which removes identities from composites, simplifying their
structure. Cattsua, which stands for Catt with strict units and associators, trivialises both the
associativity and unitality operations of Catt, and is generated by a generalisation of pruning
called insertion. Insertion merges multiple composites into a single operation, flattening the
structure of terms in the theory.

Further, we provide reduction systems that generate the equality of both Cattsu and Cattsua

respectively, and prove that these reductions systems are strongly terminating and confluent.
We therefore prove that the equality, and hence typechecking, of both theories is decidable.
This is used to give an implementation of these type theories, which uses an approach inspired
by normalisation by evaluation to efficiently find normal forms for terms. We further introduce
a bidirectional typechecking algorithm used by the implementation which allows for terms to
be defined in a convenient syntax where many arguments can be left implicit.

Acknowledgements

I would firstly like to thank everyone that I have collaborated with over the course of my PhD,
both for their contributions to the work that appears in this thesis, but also for their contri-
butions to my development as a researcher. I would especially like to thank my supervisor,
Jamie Vicary, whose guidance throughout was invaluable, for keeping my research on track
despite the disruptions caused by the pandemic during the first years of my PhD.

I would also like to thank all the friends who have been with me at any point in this journey.
I particularly want to show my appreciation (and apologise) to everyone who was bombarded
with technical questions throughout the writing up of this text; I thoroughly enjoyed our
discussions on correct typesetting and use of the English language.

Lastly, I would like to thank my family for supporting me throughout my entire education. I
would not have made it to this point without them.

Contents

Introduction 11

1 Background 19
1.1 Higher categories . 19

1.1.1 Pasting diagrams . 24
1.1.2 Weak higher categories . 27
1.1.3 Computads . 32

1.2 The type theory Catt . 33
1.2.1 Syntax of Catt . 33
1.2.2 Ps-contexts . 35
1.2.3 Typing for Catt . 38
1.2.4 Basic constructions . 39
1.2.5 Suspension . 41

2 A formalised presentation of Catt with equality 43
2.1 Extended substitution . 43
2.2 CattR: Catt with equality . 46

2.2.1 Syntax . 46
2.2.2 Typing and equality . 50

2.3 The set of operations O . 53
2.3.1 Operation sets . 53
2.3.2 Operation properties . 59

2.4 The set of equality rulesR . 61
2.4.1 Tame theories . 63
2.4.2 Further conditions . 70
2.4.3 Endo-coherence removal . 77

3 Constructions in CattR 81
3.1 Pruning . 82

3.1.1 Dyck words . 84
3.1.2 The pruning construction . 87
3.1.3 Properties of pruning . 89

3.2 Trees . 94
3.2.1 Wedge sums . 95
3.2.2 Tree contexts . 98

3.3 Structured syntax . 101
3.3.1 Typing and equality . 107

3.3.2 Standard coherences . 111
3.4 Insertion . 118

3.4.1 Universal property of insertion . 125
3.4.2 The insertion rule . 128
3.4.3 Further properties . 131

4 Semistrict variants of Catt 147
4.1 Reduction . 148

4.1.1 Termination . 150
4.1.2 Confluence . 153

4.2 Cattsu . 156
4.2.1 Normalisation for Cattsu . 159
4.2.2 Disc trivialisation . 163

4.3 Cattsua . 165
4.3.1 Reduction for Cattsua . 166
4.3.2 Confluence of Cattsua . 171

4.4 Towards normalisation by evaluation . 176
4.4.1 Syntax . 177
4.4.2 Evaluation . 181
4.4.3 Typechecking . 184
4.4.4 Examples . 188
4.4.5 Further work . 190

4.5 Models . 191
4.5.1 Rehydration for pasting diagrams . 193
4.5.2 Towards generalised rehydration . 197

4.6 Future ideas . 200

Introduction

The study of higher-dimensional structures is becoming more prevalent in both mathematics
and computer science. Higher categories [Lei04; RV22], a broad term for many different gen-
eralisations categories which capture these higher-dimensional ideas, are a central tool for
studying these structures. The “higher” nature of these categories typically corresponds to
the existence of morphisms whose source and target may be other morphisms, instead of just
objects. A common method of organising this data is by giving a set of n-cells for each n ∈ N.
A 0-cell then corresponds to the objects of an ordinary category, and the source and target of
an (n+ 1)-cell are given by n-cells.

These higher categories present in many forms, and have been characterised into a periodic
table of categories [CG07a; CG07b]. Of particular interest are the (n, k)-categories for n, k ∈
N ∪ {∞}, higher categories which contain m-cells for m ≤ n, and whose m-cells are in-
vertible for m ≤ k. In mathematics, the study of (∞, 0)-categories, known as∞-groupoids,
is motivated by the study of the homotopy structure of topological spaces [Bou16], where
n-cells are given by paths in the topological space, with higher cells taking the form of ho-
motopies between lower cells. In computer science, many applications have been found for
(n, n)-categories for smaller n, more commonly referred to as n-categories, including quan-
tum computing [HV19], logic [Bar91; Mel09], physics [BD95], and game theory [GHWZ18],
among others [Str12].

The composition of 1-cells in an n-category functions identically to the composition of mor-
phisms in a 1 category; two morphisms f : x → y and g : y → z can be composed to form a
1-cell f ∗ g : x → z. However, there are two distinct ways of composing 2-cells, depicted by
the diagrams below:

• • • • •
β

α

γ δ

These diagrams mirror the concept of commutative diagrams for 1-categories, where spaces in
the commutative diagram representing an equality have been replaced by 2-cell arrows. The
first of these composites composes two 2-cells α and β along a shared 1-cell boundary creating
the vertical composite α⋆1β. The second composes the 2-cells γ and δ along a 0-cell boundary
and creates the horizontal composite γ ⋆0 δ. In higher dimensions, the pattern continues of
having n distinct ways of composing two n-cells. For each n-cell, there is also an identity
(n+ 1)-cell.

Similarly to 1-categories, n-categories must satisfy various laws concerning their operations.
These can be roughly organised into 3 groups:

11

• Associativity laws: Each of the composition operations in an n-category is associative.

• Unitality laws: The identity morphisms are a left and right unit for the appropriate
composition operations.

• Interchange laws: These laws govern the relation between different compositions on the
same cells. For any four 2-cells that form the following diagram:

• • •
β

α γ

δ

the first of the interchange laws states that two composites below are related:

(α ⋆1 β) ⋆0 (γ ⋆1 δ) ' (α ⋆0 γ) ⋆1 (β ⋆0 δ)

These laws can be combined to create non-trivial emergent behaviour in a form not seen in
the theory of 1-categories. One critical example of this is known as the Eckmann-Hilton argu-
ment [EH62], which states that the composition of two scalars, morphisms from the iden-
tity to the identity, commute. The argument proceeds by moving the two scalars around
each other, as depicted in Figure 1. This crucially uses both the interchange and unitality
laws.

• • ' • • ' • • •

'

• • ' • • ' • • •

id

id

id

id

id

id

α

β

β

α

• • •α id

• • •id β

• • •id β

• • •α id

• •
α

id
• •
id

β

• •
id

α
• •
β

id

Figure 1: The Eckmann-Hilton argument.

Semistrict higher categories While we have given the types of laws that must hold in
n-categories, we have not yet stated the full nature of these laws. By taking each of these
laws to hold up to equality, one obtains the notion of a strict n-category. It is often the case
in category theory that equality is the incorrect notion by which to compare objects, with
the coarser relation of isomorphism being preferable. In the presence of higher-dimensional

12

cells, arrows themselves can be compared up to isomorphism. This allows the laws for an
n-category to be stated with isomorphism replacing equality, giving rise to the notion of weak
n-category.

In such a weak n-category, each law is given by a set of isomorphisms, which are given as part
of the data of the category. For the associativity law of three 1-cells f , g, and h, an invertible
2-cell known as the associator must be given, which takes the following form:

αf,g,h : (f ∗ g) ∗ h→ f ∗ (g ∗ h)

Similarly, the unit laws for a 1-cell f are given by the left unitor λf and the right unitor ρf
which take the following form:

λf : id ∗ f → f ρf : f ∗ id→ f

Whereas two morphisms being equal is a property of those morphisms, an isomorphism be-
tween the samemorphisms is a form of data, and the choice of isomorphismmay not be unique.
Weak higher categories therefore contain higher coherence laws which govern the interaction
of these isomorphisms. These coherence laws can also be given as isomorphisms instead of
equalities, and must satisfy their own coherence laws, leading to a tower of coherence laws.
The amount of data needed to define an n-category therefore increases exponentially as n
increases.

In addition to the difficulty in defining a weak n-category, it is also more difficult to give
proofs in a weak environment, due to the bureaucracy of working around the various co-
herence isomorphisms. Consider the proof of Eckmann-Hilton given in Figure 1. In a weak
environment, we would hope to be able to simply replace each equality by the appropriate
isomorphism, however doing so for the first equality in the proof would require us to give an
isomorphism:

α ∼= α ∗ id

Each side of this isomorphism has a different source and target, and hence no such isomor-
phism can be given in the globular setting used in this thesis. A full proof of Eckmann-Hilton
is still possible but far more involved.

Weak categories are a more general notion than their strict counterparts, with every strict n-
category generating a corresponding weak category by letting every coherence isomorphism
be given by the identity morphism. For 2-categories, the converse is in fact possible; every
weak 2-category is equivalent to a strict 2-category, allowing proofs for weak 2-categories to
be given by instead proving the same property for strict 2-categories.

This is no longer possible in n-categories where n ≥ 3. It was shown by Simpson [Sim98] that
strict n-categories do not model the homotopy structure of all topological spaces, with the
topological space S2 having no interpretation. More concretely, we consider the morphism
EHα,β : α ⋆1 β → β ⋆1 α generated by the Eckmann-Hilton argument for scalars α and β. In
a strict 3-category, this morphism is given by the identity and so:

EHα,β ⋆2 EHβ,α = id

This equality does not hold in a general weak 3-category (even up to isomorphism), contra-
dicting that each weak 3-category is equivalent to a strict 3-category.

13

This motivates the search for semistrict definitions of n-category: definitions where some
operations are strict, yet do not lose the expressivity of weak n-categories. For 3-categories,
two such definitions have been proposed:

• Joyal and Kock [JK07; JK13] define a monoidal 2-category (which can be viewed as a
3-category with a single 0-cell) which only has weak units and unitors, and is other-
wise strict. They prove that all braided monoidal categories (weak 3-categories with
a unique 0-cell and unique 1-cell) can be interpreted in this setting as the category of
endomorphisms on the weak unit morphism.

• Gray-categories are a form of semistrict 3-categories for which all structure is strict ex-
cept the interchanger, the isomorphism witnessing the interchange law. Gordon, Power,
and Street [GPS95] prove that every weak 3-category is equivalent to a Gray-category.

It is non-trivial to even define such a notion of semistrict n-category for n > 3, let alone prove
that it loses no expressivity over its weak counterpart. Simpson conjectures [Sim98] that
having only the unit laws weak is sufficient to model all homotopy groupoids,∞-groupoids
arising from the homotopy of topological spaces, though it is unclear if such a definition has
been given. Hadzihasanovic [Had19] defines weak higher categories based on diagrammatic
sets. It could be argued that such a definition can model strict interchange, though the classes
of diagrams that can be composed in this theory are restricted to those that are spherical,
which disallows horizontal composites in the form stated above and makes comparison diffi-
cult. Batanin, Cisinski, and Weber [BCW13] define a notion of∞-category with strict units
based on the language of operads.

Definitions of semistrict n-categories which are strictly unital and associative have also been
defined, primarily inspired by the graphical language of string diagrams. Bar andVicary [BV17]
define quasi-strict 4-categories, where the associativity and unitality laws hold strictly up to
equality. Dorn [Dor18] defines associative n-categories: a definition of strictly associative and
unital n-category similarly based on geometric principles. Associative n-categories are further
studied by Heidemann, Reutter, Tataru, and Vicary [RV19; HRV22; TV24], which has recently
led to the construction of the graphical proof assistant homotopy.io [CHH+24] for manipu-
lating higher-dimensional string diagrams. Similarly to the case for diagrammatic sets, the
composition operations in these theories have a different form to those of strict n-categories,
making comparison difficult. The connection between these definitions and geometry is stud-
ied by Dorn and Douglas [DD21] and Heidemann [Hei23].

Type theory and higher categories Deep links exist between higher category theory and
type theory. The identity type in Martin-Löf type theory (Mltt) [Mar75] naturally leads to
higher-dimensional structure; the identity type s =A t can be formed for any two terms s
and t of type A, but this construction can be iterated since the identity type is a type itself,
leading to higher identity types p =s=At q for p, q : s =A t. Operations on this type are
generated by the J-rule, an induction principle for the identity type. Independent proofs by
Lumsdaine [Lum10] and Garner and van den Berg [GvdB10] show that the J-rule is sufficient
to equip identity types with the appropriate operations to form a weak∞-groupoid.

Terms of the identity type s =A t correspond to witnesses of the fact that s and t are equal,
or can even be viewed as proofs of the equality. The study of these proofs as objects of study
in their own right is known as proof relevance. Although the axiom of uniqueness of identity
proofs (UIP), which states that any two terms of the identity type are themselves equal, is

14

consistent with Mltt, it was shown that it is not provable by Hofmann and Streicher, who
constructed a model of Mltt where types are interpreted as 1-groupoids, and identity types
are non-trivial.

The ∞-groupoidal nature of Mltt is embraced in Homotopy type theory (Hott) [Uni13],
where types are interpreted as topological spaces. The key component of Hott, the univalence
axiom, which is incompatible with UIP, states that the identities between types are given by
equivalences between these types, which need not be unique.

The models of Hott are equipped with more structure than is present in an∞-groupoid, and
are given by∞-toposes [Shu19]. In the appendices of his thesis [Bru16], Brunerie defines a
type theory for ∞-groupoids by removing all structure from Mltt which does not concern
the identity type. This theory constructs the identity type similarly to Mltt, but replaces
the J-rule with a rule stating that all terms over contractible contexts are equal. Finster and
Mimram further refine this idea to produce the type theory Catt [FM17], a type theory for
weak∞-categories, using techniques from a definition of weak∞-categories due to Maltsin-
iotis [Mal10] which itself is based on an earlier definition of ∞-groupoids which was given
by Grothendieck [Gro83]. It was later shown [BFM24] that type-theoretic models of Catt
coincide with∞-categories defined by Maltsiniotis.

The type theory Catt is unusual, due to having no computation or equality rules. In the
current work we leverage this to define new notions of semistrict∞-category, by adding defi-
nitional equality to Catt. This equality unifies certain terms, which correspond to operations
in a weak∞-category, causing the semistrict behaviour of the resulting theories. This thesis
develops a framework for working with equality relations in Catt, and uses this to define two
new type theories, Cattsu and Cattsua:

• Cattsu is a version of Catt which is strictly unital. It is primarily generated by the
pruning reduction, a computation rule which removes unnecessary identities frommore
complex terms.

• Cattsua is Catt with strict unitors and associators. In this theory, pruning is replaced
by a more general reduction which we call insertion, which merges multiple composites
into a single composite, flattening the structure of terms in the theory. We claim to give
the first algebraic definition of an∞-category where the unitality and associativity laws
hold strictly as models of Cattsua.

Themajority of the technical content of this thesis is concernedwith proving standardmetathe-
oretic properties of these type theories. This includes defining a notion of computation for each
theory, given by demonstrating the existence of a confluent and terminating reduction system,
which allows these theories to be implemented. This is used to produce interpreters for both
theories, allowing complex constructions to be checked mechanically. We demonstrate the
utility of this by formalising a proof of the syllepsis, a 5-dimensional term witnessing a com-
mutativity property of the Eckmann-Hilton argument.

15

Overview We now give an overview of the content contained in each of the following chap-
ters of the thesis.

• Chapter 1 gives an introduction to ∞-category theory. It defines strict ∞-categories
and continues to define the definition of weak ∞-categories due to Maltsiniotis. The
chapter ends by giving a definition of the type theory Catt, as defined by Finster and
Mimram, and describing some preliminary well-known constructions in Catt.

• Chapter 2 introduces a general framework for studying variants of Catt with defini-
tional equality relations generated from a set of rules R, which we name CattR. The
chapter also states various properties concerning the metatheory of CattR, including
specifying conditions on the set of equality rules R, under which the theory is well-
behaved. The description of Catt in this chapter is comprehensive and self-contained,
although lacks some exposition of the previous chapter. The type theory CattR is ac-
companied by an Agda formalisation, which is introduced in this chapter.

• Chapter 3 takes an arbitrary well-behaved variant of CattR, and explores various con-
structions that can be formed in this setting. The primary purpose of this chapter is to
introduce the pruning operation, which is done in Section 3.1, and the insertion operation,
which is introduced in Section 3.4. Sections 3.2 and 3.3 build up theory about a certain
class of contexts represented by trees, and terms that appear in these contexts. This
theory is vital for a complete understanding of insertion.

• In Chapter 4, the type theories Cattsu and Cattsua are finally defined in Sections 4.2
and 4.3 respectively, as variants of the framework CattR. Preliminary results about
both theories are proved, primarily by compiling results that have been stated in the
previous two chapters. The main technical contribution of this section involves giving
reduction systems for both theories, and giving proofs that these reductions systems are
strongly terminating and globally confluent, hence making equality in these theories
decidable.

In Section 4.4, the decidability of equality is used to implement a typechecker for both
theories Cattsu and Cattsua. The typechecker uses normalisation by evaluation (NbE)
to reduce terms to a canonical form where they can be checked for equality. The section
discusses the interaction of NbE with Catt, as well as discussing limitations of this
approach in this setting.

Section 4.5 discusses some properties of the models of these type theories, introducing
a technique which we call rehydration, which “pads out” terms of the semistrict theory
with the necessary coherences to produce a term of Cattwhich is equivalent to the orig-
inal term. Rehydration can be seen as a conservativity result for the semistrict theories
introduced at the start of the chapter. A proof of rehydration is given for the restricted
case of terms over a certain class of context known as ps-contexts. This partial rehy-
dration result is sufficient to determine that the semistrictness defined by Cattsu and
Cattsua is a property, a model of Catt can be a model of Cattsu or Cattsua in at most
one way. We further explore some obstructions to rehydration in a generic context.

The thesis endswith a discussion of further variants of Catt and other options for future
work.

Although results of later chapters depend on definitions and results of the preceding chapters,

16

a linear reading of this thesis is not essential. A reader who is already familiar with the type
theory Catt can safely skip Chapter 1, and a reader who is only interested in the type theory
Cattsu could read Chapter 2 followed by Sections 3.1 and 4.2. Similarly, a reader only inter-
ested in Cattsua can ignore any content on the pruning construction. Section 4.4 may be of
interest to a reader who is purely interested in the type-theoretic techniques used, and not the
type theory Catt itself.

Statement of authorship The type theory Cattsu was originally developed in collabora-
tion with Eric Finster, David Reutter, and Jamie Vicary, and was presented by the author at the
Logic in Computer Science conference in 2022 [FRVR22]. Cattsua will be presented at Logic
in Computer Science 2024 [FRV24] and was developed in collaboration with Eric Finster and
Jamie Vicary.

The author claims the development of the framework CattR and its accompanying Agda for-
malisation as individual contribution, as well as the implementation of Cattsu and Cattsua

which appears in Section 4.4.

17

18

Chapter 1

Background

We begin with an overview of the important concepts required for the rest of the thesis.
Throughout, we will assume knowledge of various basic concepts from computer science, as
well as a basic knowledge of category theory (including functor categories, presheaves, and
(co)limits) and type theory. The primary purpose of the following sections is to introduce
weak∞-categories. While there are many differing definitions of∞-categories (see [Lei01]),
we focus here on models of the type theory Catt [FM17], which are known to be equivalent
to a definition of Maltsiniotis [Mal10] based off an earlier definition by Grothendieck [Gro83],
which we introduce in Section 1.1.2. In Section 1.2, we define the type theory Catt, similarly
to how it was originally defined.

This section additionally serves as a place to introduce various syntax and notations which
will be used throughout the rest of the thesis.

1.1 Higher categories
A higher category is a generalisation of the ordinary notion of a category to allow higher-
dimensional structure. This manifests in the form of allowing arrows or morphisms to have
their source or target be another morphism instead of an object. In this thesis, we are primarily
concerned with models of∞-categories, which are equipped with the notion of an n-cell for
each n ∈ N, where each (n+1)-cell has a source and target n-cell, and 0-cells play the role of
objects in an ordinary category.

The role of objects is played by 0-cells, with 1-cells as the morphisms between these objects.
For 0-cells x and y, a 1-cell f with source x and target y will be drawn as:

x y
f

or may be written as f : x→ y. Two cells are parallel if they have the same source and target.
Between any two parallel n-cells f and g, we have a set of (n+1)-cells between them. A 2-cell
α : f → g may be drawn as:

x y

g

f

α

19

A 3-cell γ between parallel 2-cells α and β could be drawn as:

x y

f

g

α β
γ

Just as in ordinary 1-category theory, we expect to be able to compose morphisms whose
boundaries are compatible. For 1-cells, nothing has changed, given 1-cells f : x → y and
g : y → z we form the composition f ∗ g:

x y z
f g

which has source x and target z. We pause here to note that composition will be given in “dia-
grammatic order” throughout the whole thesis, which is the opposite of the order of function
composition yet the same as the order of the arrows as drawn above. This is chosen as it will
be common for us to draw higher-dimensional arrows in a diagram, and rare for us to consider
categories where the higher arrows are given by functions. In an attempt to avoid confusion,
we use an asterisk (∗) to represent composition of arrows or cells in a higher category, and
will use a circle (◦) only for function composition.

In two dimensions, there is no longer a unique composition operation. For 2-cells α : f → g
and β : g → h, the composite α ∗1 β can be formed as before:

x y

f

h

g

α

β

We refer to this composition as vertical composition. The cells γ : i→ j and δ : k → l can also
be composed in the following way:

x y z

j

i

l

k

γ δ

This composition is called the horizontal composition, and is written γ ∗0 δ. The subscript refers
to the dimension of the shared boundary in the composition, with the 1-cell g being the shared
boundary in the vertical composition example and the 0-cell y being the shared boundary in
the horizontal composition example. The difference between the dimension of the cells being
composed and the dimension of this shared boundary is known as the codimension of the com-
position, due to the similarity to the definition of the codimension of a vector subspace.

This pattern continues with 3-cells, which can be composed at codimension 0, 1, or 2, as de-
picted below:

• • • • • • •

20

where the unlabelled arrows and objects (which are written •) are assumed to represent arbi-
trary potentially-distinct cells.

For every n-cell x, there is an (n+ 1)-cell id(x) : x→ x, called the identity morphism.

Similarly to 1-categories,∞-categories need to satisfy certain laws, which fall into 3 groups:
associativity, unitality, and interchange. These laws can hold strictly, meaning that they hold
up to equality, or weakly, meaning that they hold up to a higher-dimensional isomorphism.
We delay the discussion of weak∞-categories to Section 1.1.2, and begin with the discussion
of strict∞-categories.

In these strict categories, associativity laws are the same as for 1-categories, only now a law is
needed for each composition (in every dimension and codimension). Unitality is again similar
to the case for 1-categories, except we again need unitality laws for each composition. We
note that for higher-codimensional compositions, an iterated identity is needed. For example,
given a 2-cell α : f → g, the appropriate equation for left unitality of horizontal composition
is:

id(id(x)) ∗0 α = α

In general for a unit to be cancelled, it must be iterated a number of times equal to the codi-
mension of the composition.

Interchange laws do not appear in 1-categories, and specify how compositions of different
dimensions interact. The first interchange law states that for suitable 2-cells α, β, γ, and δ,
that:

(α ∗0 γ) ∗1 (β ∗0 δ) = (α ∗1 β) ∗0 (γ ∗1 δ)

This can be diagrammatically depicted as:

• • = • • •

• • •α γ

• • •β δ

• •
α

β
• •
γ

δ

There are also interchange laws for the interaction of composition and identities; A com-
position of two identities is the same as an identity on the composition of the underlying
cells.

The∞-categories that we study in this thesis will be globular, meaning that their cells form a
globular set. A globular set can be seen as natural extension of the data of a category, whose
data can be arranged into the following diagram:

M O
s

t

whereO is a set of objects,M is a set of all morphisms, and s and t are functions assigning each
morphism to its source and target object respectively. 2-cells can be added to this diagram in
a natural way:

21

C2 C1 C0

s0

t0

s1

t1

In a globular set, the source and target of any cell must be parallel, meaning they share the
same source and target. This condition is imposed by globularity conditions. Adding these and
iterating the process leads to the following definition.

Definition 1.1.1. The category of globes G has objects given by the natural numbers and
morphisms generated from sn, tn : n→ n+ 1 quotiented by the globularity conditions:

sn+1 ◦ sn = tn+1 ◦ sn
sn+1 ◦ tn = tn+1 ◦ tn

The category of globular sets Glob, is the presheaf category [Gop, Set].

Unwrapping this definition, a globular setG consists of setsG(n) for each n ∈ N, with source
and target maps sn, tn : G(n+ 1)→ G(n), forming the following diagram:

· · · G(3) G(2) G(1) G(0)
s0

t0

s1

t1t2

s2

and satisfying the globularity conditions. A morphism of globular sets F : G → H is a
collection of functions G(n)→ H(n) which commute with the source and target maps.

Given a globular set G, we will call the elements of G(n) the n-cells and write f : x → y for
an (n+1)-cell f where sn(f) = x and tn(f) = y. We further define the n-boundary operators
δ−n and δ+n which take the source or target respectively of a (n+ k)-cell k times, returning an
n-cell.

Example 1.1.2. The n-disc Dn is a finite globular set given by Y (n), where Y is the Yoneda
embedding G→ Glob. Dn has no k-cells for k > n, a single n-cell dn, and twom-cells d−m
and d+m form < n. Every (m+1)-cell ofDn has source d−m and target d+m. The first few discs
are depicted in Figure 1.1. The Yoneda lemma tells us that a map of globular sets Dn → G
is the same as an n-cell of G. For an n-cell x of G, we let {x} be the unique map Dn → G
which sends dn to x.

D0 D1 D2 D3

d0 d−0 d+0
d1 d−0 d+0

d+1

d−1

d2 d−0 d+0

d+1

d−1

d−2 d+2
d3

Figure 1.1: The first disc globular sets.

Remark 1.1.3. Globular sets are not the only natural extension of the data of a 1-category.
The form of this data in a definition of a higher category is referred to as the shape of the
cells. Notable alternatives to globular sets include simplicial sets, opetopic sets, and cubical

22

sets.

We can now give the definition of a strict∞-category.

Definition 1.1.4. A strict∞-category is a globular set G with the following operations:

• Form < n, a composition ∗m taking n-cells f and g with δ+m(f) = δ−m(g) and produc-
ing an n-cell f ∗m g with:

s(f ∗m g) =

{
s(f) ifm = n− 1

s(f) ∗m s(g) otherwise

t(f ∗m g) =

{
t(g) ifm = n− 1

t(f) ∗m t(g) otherwise

• For any n-cell x, an identity (n+ 1)-cell id(x) : x→ x.

and satisfying equalities:

• Associativity: Givenm < n and n-cells f , g, and h with δ+m(f) = δ−m(g) and δ+m(g) =
δ−m(h):

(f ∗m g) ∗m h = f ∗m (g ∗m h)

• Unitality: Givenm < n and n-cell f :

idn−m(δ−m(f)) ∗m f = f

f ∗m idn−m(δ+m(f)) = f

• Composition interchange: If o < m < n and α, β, γ, and δ be n-cells with

δ+m(α) = δ−m(β) δ+m(γ) = δ−m(δ) δ+o (α) = δ−o (γ)

then:
(α ∗o γ) ∗m (β ∗o δ) = (α ∗m β) ∗o (γ ∗m δ)

• Identity interchange: Letm < n and f and g be n-cells with δ+m(f) = δ−m(g). Then:

id(f) ∗m id(g) = id(f ∗m g)

Amorphism of∞ categories is a morphism of the underlying globular sets which preserves
composition and identities.

There is a clear forgetful functor from the category of strict∞-categories to the category of
globular sets, which has a left adjoint given by taking the free strict∞-category over a globular
set.

We end this section with an example of a non-trivial application of the axioms of an ∞-
category, known as the Eckmann-Hilton argument. The argument shows that any two scalars
(morphisms from the identity to the identity) commute.

23

Proposition 1.1.5 (Eckmann-Hilton). Let x be an n-cell in an∞-category and let α and β
be (n+ 2)-cells with source and target id(x). Then α ∗n+1 β = β ∗n+1 α.

Proof. The cells α and β can be manoeuvred around each other as follows:

α ∗n+1 β

= (α ∗n i) ∗n+1 (i ∗n β) Unitality
= (α ∗n+1 i) ∗n (i ∗n+1 β) Interchange
= α ∗n β Unitality
= (i ∗n+1 α) ∗n (β ∗n+1 i) Unitality
= (i ∗n β) ∗n+1 (α ∗n i) Interchange
= β ∗n+1 α Unitality

where i = id(id(x)).

We give a more graphical representation of the proof in Figure 1, which appeared in the intro-
duction. In this proof the α is moved to the left of β, though we equally could have moved it
round the right, and the choice made was arbitrary.

1.1.1 Pasting diagrams
The definition of∞-categories given in the previous section is close in spirit to the ordinary
definitions of 1-categories and clearly demonstrates the different families of axioms present.
However, we will see in Section 1.1.2 that these sorts of definitions do not scale well to our
eventual setting of weak higher categories.

There is a special class of (finite) globular sets known as pasting diagrams, sometimes known as
pasting schemes. The elements of the free strict∞-category on a globular setG can instead be
represented by a pasting diagram equipped with a map into G. To do this, it must be possible
to obtain a canonical composite from each pasting diagram.

Informally, we can define an n-dimensional pasting diagram to be a finite globular set which
admits a unique full composite of dimension n, where a full composite of a globular setG is an
element of the free∞-category over G which uses all the maximal elements. This functions
as the primary intuition on the role of pasting diagrams.

Pasting diagrams were used directly by Batanin [Bat98b] to give a definition of weak ∞-
categories, and will be pivotal in Section 1.1.2 to define the variety of∞-categories that Catt
is based on. A more in-depth discussion of pasting diagrams, representations of free strict
∞-categories using them, and their use in the definition of weak∞-categories can be found
in Higher operads, higher categories [Lei04].

Before giving a more formal definition of pasting diagrams, we explore some examples and
non-examples. In contrast to Leinster, we consider pasting diagrams as a full subcategory of
globular sets, rather than a separate category with a function sending each pasting diagram
to a globular set.

The disc globular sets introduced in Example 1.1.2 are all examples of pasting diagrams. The
unique “composite” of these globular sets is just given by their maximal element, noting that

24

we allow a singular cell in our informal definition of composite. The uniqueness of this is trivial
as the only possible operations we could apply are compositions with units, which gives the
same cell under the laws of an∞-category.

The diagrams used to graphically represent our composition operations (of which we recall
three below) are also pasting diagrams.

x y z
f g

x y

f

h

g

α

β

x y z

g

f

i

h

α β

The composite of these diagrams is just the composite of the two maximal cells with the ap-
propriate codimension.

We can also consider composites which are not binary composites of two cells of equal dimen-
sion. For example the following globular set is a pasting diagram:

x y z

g

f

h
α

with a composite given by α∗0 id(h). This operation is fairly common (in fact we have already
seen it in Proposition 1.1.5) and is known as whiskering. In this case we would say that the
composite is given by the right whiskering of α with h.

The 1-dimensional pasting diagrams are all given by chains of 1-cells of the form:

x0
f0→ x1

f1→ x2
f2→ · · · fn→ xn+1

There are multiple ways to form a composite over these diagrams by repeated binary compo-
sition, however these all have the same result due to associativity.

Lastly we look at the following diagram, where all the 0-cells and 1-cells are assumed to be
distinct:

• • •
α

β

γ

δ

We get a composite given by (α ∗1 β) ∗0 (γ ∗1 δ). The uniqueness of this composite is due to
the interchange law.

Non-examples of pasting diagrams roughly fall into two groups: those that do not admit a
composite, and those that admit many distinct composites. The following three globular sets
fail to admit a composite (the last is drawn in a box to emphasise that z is part of the same
globular set as x, y, f , g, and α):

25

y

x

z

f

g

x y

f

g

x y z

f

g

α

The globular set with a single 0-cell x, and a single 1-cell f : x→ x has too many composites:
f and f ∗0 f need not be equal in an∞-category.

To describe the free ∞-category in terms of pasting diagrams we need to be able to extract
a composite from a pasting diagram, and construct a pasting diagram from an arbitrary com-
posite. Each pasting diagram having a unique composite solves the former issue.

To be able to construct a pasting diagram from a composite, we wish to equip our set of pasting
diagrams itself with the structure of an∞-category. We therefore need our pasting diagrams to
have a notion of boundary and a notion of composition. A natural candidate for composition
is given by colimits, as Glob has all colimits due to being a presheaf category, and so it is
sufficient for our class of pasting diagrams to be closed under these specific colimits. In fact,
it is sufficient to contain a class of colimits known as globular sums.

Definition 1.1.6. A globular structure on a category C is a functor D : G → C, specifying
certain objects as discs in the category. A globular sum is a colimit of a diagram of the form:

D(i0) D(i1) D(i2) D(in) D(in+1)

· · ·

D(j0) D(j1) D(jn)

f0 g0 fn gnf1 g1

Where all morphisms gi are a composite of source maps (D(sn) for some n) and the mor-
phisms fi are a composite of target maps (D(tn) for some n). Given that the maps fi and gi
are uniquely determined, we may write such a globular sum as:

D(i0)qD(j0) D(i1)qD(j1) D(i2) · · ·D(in)qD(jn) D(in+1)

A globular extension is a category equipped with a globular structure where all globular
sums exist, and a morphism of globular extensions is a functor of the underlying categories
commuting with the disc functors and preserving globular sums.

We can now give our first definition of a pasting diagram.

Definition 1.1.7. The category Glob has a globular structure G → Glob given by the
Yoneda embedding. The category of pasting diagrams, Pd, is the full subcategory contain-
ing the globular sets which are globular sums. The boundary of an (n + 1)-dimensional
pasting diagram is given by replacing each instance of Dn+1 by Dn in its globular sum rep-
resentation. There are two canonical maps including the boundary into the original pasting
diagram, whose images give the source and target of the pasting diagram.

The category of pasting diagrams has a globular structure G → Pd sending n to Dn. It is a
globular extension and is in fact the universal globular extension; it is initial in the category

26

of globular extensions [Ara10].

We finish this section with one larger example.

Example 1.1.8. The following depicts a 2-dimensional pasting diagram.

x y z w

g

f

h

k

i

jα
β

γ

This has the following globular sum decomposition:

x y y z z w z w

y z z w

g

f i

j
h

j

j

k

α
β

γ

The source and target of the diagram are given by the isomorphic pasting diagrams:

x y z w

f

h

i

and x y z w

g

h

k

1.1.2 Weak higher categories
The∞-categories we have defined so far have all been strict∞-categories, meaning that the
laws are required to hold up to equality. In ordinary 1-category theory, isomorphism is usu-
ally preferred over equality for comparing objects. Similarly, when we have access to higher-
dimensional arrows, it follows that we can also consider isomorphisms between morphisms,
and therefore consider laws such as associativity up to isomorphism instead of equality.

Topological spaces provide one of the primary examples for where it is useful to consider weak
laws. Given a topological space X , we can define a globular set of paths and homotopies. Let
the 0-cells be given by points x of the topological space, let morphisms from x to y be given
as paths I → X (where I is the topological interval [0, 1]) which send 0 to x and 1 to y, and
let higher cells be given by homotopies. The natural composition of two paths p and q is the
following path:

(p ∗ q)(i) =

{
p(2i) when i < 0.5

q(2i− 1) when i ≥ 0.5

which effectively lines up the paths end to end. Given 3 paths p, q, and r, the compositions
(p ∗ q) ∗ r and p ∗ (q ∗ r) are not identical but are equal up to homotopy, meaning the two
compositions are isomorphic. Therefore, in this case the composition p ∗ q does not form a
strict∞-category structure, but rather a weak structure.

Weak 2-categories We start our exploration of weak higher categories by considering the
lower dimension case of bicategories (weak 2-categories). Here, interchangemust still be given

27

by a strict equality, as there are no non-trivial 3-cells in a 2-category. However, associativity
and unitality can be given by isomorphisms known as associators and unitors:

αf,g,h : (f ∗0 g) ∗0 h→ f ∗0 (g ∗0 h)
λf : id(x) ∗0 f → f

ρf : f ∗0 id(y)→ f

for f : x→ y, g : y → z, and h : z → w.

Example 1.1.9. All strict 2-categories are also bicategories. The bicategory of spans is an
example of a bicategory which is not strict. Starting with a category C equipped with chosen
pullbacks, we define the bicategory of spans over C to be:

• Objects are the same as C

• Morphisms A to B are spans A← C → B.

• A 2-morphism from A← C → B to A← C ′ → B is a morphism C → C ′ such that
the following diagram commutes:

C

A B

C ′

• Compositions and identities of 2-morphisms is given by composition and identities of
the underlying morphisms in C.

• The identity on an object A is the span A← A→ A.

• Given spansA← D → B andB ← E → C , their composite is given by the pullback:

D ×B E

D E

A B C

⌟

• Associators and unitors are given by the universal property of the pullback.

In general, there could be many possible isomorphisms between (f ∗ g) ∗ h and f ∗ (g ∗ h),
and we require that the chosen morphisms satisfy certain compatibility properties. The first is
that each of the associator, left unitor, and right unitor should be a natural isomorphism. The
second is a property known as coherence, saying that any two parallel morphisms built purely
from naturality moves, associators, and unitors must be equal.

For bicategories it is sufficient to give two coherence laws: the triangle equality and pentagon
equality. The triangle equality identifies two ways of cancelling the identity in the composite
f ∗ id∗g, giving a compatibility between the left and right unitors. It is given by the following
commutative diagram:

28

(f ∗ id) ∗ g f ∗ (id ∗ g)

f ∗ g

αf,id,g

ρf∗0id(g) id(f)∗0λg

The pentagon equation identifies two ways of associating ((f ∗ g) ∗ h) ∗ k to f ∗ (g ∗ (h ∗ k)).
It is given by the diagram below:

(f ∗ g) ∗ (h ∗ k)

((f ∗ g) ∗ h) ∗ k f ∗ (g ∗ (h ∗ k))

(f ∗ (g ∗ h)) ∗ k f ∗ ((g ∗ h) ∗ k)

αf∗g,h,k αf,g,h∗k

αf,g,h∗0id(k)

αf,g∗h,k

id(f)∗0αg,h,k

Surprisingly, these two equations are enough to give full coherence. For the example of spans
from Example 1.1.9, these two equations follow from the uniqueness of the universal mor-
phism.

Weak∞-categories To move from weak 2-categories to weak 3-categories, new coherence
cells for interchangers are added to replace the interchanger equalities, and new equalities
must be added to specify the interaction between the interchangers and other coherence mor-
phisms. Furthermore, the triangle and pentagon equations from 2-categories will become
isomorphisms in a weak 3-category, causing more coherence equations to be added.

As we move up in dimension, the number of coherence morphisms and equalities required
increases rapidly. A bicategory has 11 operations (1-identity, 2-identity, 1-composition, verti-
cal composition, horizontal composition, left unitor (and inverse), right unitor (and inverse),
and associator (and inverse)), whereas a fully weak tricategory already has around 51 opera-
tions [Gur06]. These numbers are obtained by unwrapping various subdefinitions and should
be treated as approximate. Comparisons between the size of partially weak definitions can be
found in [BV17].

Because of this complexity, we look for more uniform ways to represent the operations and
axioms of an ∞-category. In this thesis, we will work with the type theory Catt, which is
based on a definition of∞-categories due to Maltsiniotis [Mal10], which is itself based on a
definition of ∞-groupoid by Grothendieck [Gro83]. We will sketch the ideas behind these
definitions here, and give a definition of Catt in Section 1.2.

The key insight behind Grothendieck’s definition is that pasting diagrams should be con-
tractible, instead of containing a unique composite. Whereas in a strict ∞-category, each
pasting diagram effectively has 1 composite, in a weak∞-category there can be many opera-
tions over a pasting diagram.

These operations are assembled into a globular extension called a coherator. A weak ∞-
groupoid is then a presheaf on this coherator for which the opposite functor preserves globular

29

sums (alternatively, the dual notion of globular product could be defined, and such a presheaf
could be asked to preserve globular products). The objects of a coherator are given by pasting
diagrams, withDn being sent to the n-cells of the category and other pasting diagrams being
sent to composable sets of cells (as determined by the preservation of globular sums).

Operations over a pasting diagramP in the coherator are given bymorphismsDn → P . When
we take a presheaf over this, we obtain a function that takes anP -shaped collection of cells to a
single n-cell. Operations can be precomposed with source and target mapsDn−1 → Dn to get
the source and target of an operation. To build the coherator, we start by taking the category
of pasting diagrams. The “operations” of this category consist solely of the inclusions of discs
into pasting diagrams, which correspond to picking a single element from the pasting diagram.
Other operations are then built using the following guiding principle.

Guiding principle for groupoids. Let f and g be two parallel operations over a pasting
diagram P . Then there is an operation h over P with source f and target g.

We define a pair of operations f, g : Dn → X to be parallel if n = 0 or both n > 0 and
f ◦ sn−1 = g ◦ sn−1 and f ◦ tn−1 = g ◦ tn−1. A lift for such a pair of parallel operations is an
operation h : Dn+1 → X such that h ◦ sn = f and h ◦ tn = g. Closing under this principle
then amounts to inductively adding lifts for all parallel operations, while ensuring that the
category remains a globular extension.

We start with some basic operations: Consider the pasting diagram A = D1 q D1 given
by:

x y za b

Our rule now tells us that since x and z are elements of A, that there should be an operation
returning a cell with source x and target z, namely the composition of a and b. In the language
of coherators, there are operations f, g : D0 → A, where f includes into the source of the first
disc of A, and g includes into the target of the second disc of A. These are trivially parallel,
and so there exists a lift h : D1 → A, giving 1-composition. Similarly, if we take the pasting
diagram with a single 0-cell x and no other cells, then applying our rule with f, g both being
the operation returning the element x produces an operation with source and target x, the
identity on x.

We can generate more complicated operations with this principle, consider pasting diagram
B:

x y z w
f g h

We already know the coherator contains 1-composition, and using composition and the univer-
sal property of globular sums, we can generate operations realising the compound composites
(f ∗ g) ∗ h and f ∗ (g ∗ h). The principle then gives us an operation returning the 2-cell
(f ∗ g) ∗ h → f ∗ (g ∗ h), which is of course the associator. This one principle allows us to
generate all the structure we need, as well as structure that is arguably unnecessary, such as
ternary compositions that did not appear in the definition of bicategory.

Unfortunately, as we have already mentioned, Grothendieck’s definition is for∞-groupoids,
where everything is invertible, instead of∞-categories in full generality, as we want to study
in this thesis. This can be seen by taking the pasting diagram C :

x y
f

30

and applying the rule with f returning y and g returning x, giving an operation that returns
a 1-cell f−1 : y → x, the inverse of f . The rule as we have stated it is too powerful.

Maltsiniotis’ definition provides a solution to this problem by giving a more refined version of
the principle. Whereas Grothendieck’s definition treats all operations as coherences, Maltsini-
otis’ definition splits operations into two classes: compositions and equivalences. Both classes
are obtained by restricting the classes of parallel operations that admit lifts.

We begin by defining what it means for an operation to be algebraic:

Definition 1.1.10. Let C be a globular extension for which the canonical functor P : Pd→
C is faithful and the identity on objects. Then an operation f : Dn → X in C is algebraic if
whenever f = P (g) ◦ f ′, g = id.

Intuitively, an operation is algebraic when it does not factor through any proper inclusion.
Algebraicity is equivalent to requiring that an operation makes use of all the locally maximal
elements of the pasting diagram, elements which do not appear in the source or target of a
higher-dimensional element of the diagram.

Equivalences contain the various invertible laws of our∞-categories such as associators, uni-
tors, identities, and interchangers. For two operations f, g : Dn → X to admit a lift under the
rule for equivalences, they must both be algebraic. This gives the following rule:

Guiding principle for categories (Equivalences). Let f and g be two parallel operations
over a pasting diagram P . If both f and g use all locally maximal variables of P , then there
is an operation over P with source f and target g.

Clearly any operations generated by this principle are invertible, as the extra condition im-
posed is symmetric. For compositions, we introduce the following asymmetric principle, re-
calling that pasting diagrams are equippedwith source and target inclusions, and letting ∂−(P)
and ∂+(P) be the images of these inclusions:

Guiding principle for categories (Composites). Let f and g are parallel operations over
a (non-singleton) pasting diagram P such that f uses all locally maximal cells of ∂−(P) and
no cells outside of ∂−(P) and g uses all locally maximal cells of ∂+(P) and no cells outside
of ∂+(P). Then there is an operation over P with source f and target g.

The condition required to form a composite can be expressed by the operation f : Dn → P
factoring into an algebraic map composed with the source inclusion into P , and similar for g
with the target inclusion. It can be easily checked that the inverse operation given above does
not satisfy the criteria for being an equivalence or composite.

As with Grothendieck’s definition, a coherator can be made by closing the globular extension
of pasting diagrams under these restricted principles, and then weak ∞-categories can be
defined to be presheaves on this coherator such that the opposite functor preserves globular
sums.

Remark 1.1.11. We have claimed that a coherator can be formed by closing under adding
lifts to parallel operations, though this is not precise and there are actually multiple ways

31

of performing this closure that lead to different coherators. For example, one could add
the lift for 1-composition twice, to get two distinct 1-composition operations, as long as
one also added a lift between these now parallel operations. Grothendieck gives a general
schema for producing (invertible) coherators, and conjectures that any two of these give
rise to equivalent models of ∞-groupoids. Despite the similarities in their constructions,
the author is not aware of a more general definition of coherator which includes both the
Grothendieck and Maltsiniotis variants and has more structure than a globular extension.

We now turn our attention back to the proof of Eckmann-Hilton from Figure 1. Given a 0-cell
x and two scalars α, β : id(x) → id(x), we expect the Eckmann-Hilton argument to give us
an isomorphism in a weak higher category, rather than the equality obtained in the strict case.
In fact, we immediately see that equalities 2, 3, and 4 in the proof can be immediately replaced
by isomorphisms (interchangers and unitors).

The first and last equalities however are more problematic, although at first we may believe
that there should exist some horizontal unitor isomorphism, upon closer inspection the two
compositions do not even have the same boundary and so are not parallel. The composition
α ∗1 β has source and target id(x), whereas the source of α ∗0 id(id(x)) is id(x) ∗0 id(x).

To recover the proof in a weak setting, the intermediate composites must be composed with
unitors so that they all have source and target id(x). To give equivalences for the first and last
step, these unitors must be moved around with naturality moves, and at a critical point the
isomorphism λid(x) ' ρid(x) is required. Multiple full proofs of Eckmann-Hilton will be given
in Section 4.4.4. The proof of Eckmann-Hilton is vastly simpler in the strict case, mainly due
to the presence of the equation id(x) ∗0 id(x) = id(x).

1.1.3 Computads
A free group is generated by a set, and a free category is generated by a directed graph, and
so it is a natural question what the generating data for a free∞-category is. We have already
seen that a free∞-category can be generated by a globular set, but free∞-categories can also
be generated by data that does not form a globular set.

Consider the minimum data needed to state the Eckmann-Hilton principle (see Figure 1 or
Proposition 1.1.5). We require a single 0-cell x, and two 2-cells α, β : id(x)→ id(x). This data
does not form a globular set as, for example, the source of the 2-cell α is not in the generating
data, but is rather an operation applied to the data. We could try to remedy this by adding a
new 1-cell f to the data to represent id(x), but then the connection between id(x) and f would
be lost and f and id(x)would be distinct in any free∞-category generated on this data.

The correct generating data for an∞-category is a computad. A version for 2-categories was
introduced by Street [Str76], which allows a generating 2-cell to have a composite or identity
as its source or target. These were extended to strict ∞-categories by Burroni [Bur93] and
weak∞-categories by Batanin [Bat98a], which allow the source and target of an n-cell to be
any (n− 1)-cell of the free∞-category generated by the lower-dimensional data.

A modern approach to computads for weak∞-categories is given by Dean, Finster, Markakis,
Reutter, and Vicary [DFM+24], which avoids much of the complexity of globular operads,
relying only on (mutual) structural induction. This definition of a computad is much closer in
style (and is inspired by) the type theory Catt which we review in Section 1.2.

32

1.2 The type theory Catt
In this section we give an overview of the dependent type theory Catt [FM17]. Catt serves
as a definition of weak∞-categories, by defining a weak∞-category to be a model of the type
theory (e.g. using categories with families [Dyb96]). In Chapter 2, we give a more general and
comprehensive presentation of Catt, allowing the addition of equality relations to the type
theory, pre-empting Chapter 4. In contrast, this section presents the version of Catt closer to
the one found in the literature, and compares its various constructions to the ideas introduced
in Section 1.1.2.

1.2.1 Syntax of Catt
Catt has 4 classes of syntax: contexts, terms, types, and substitutions.

• Contexts contain a list of variables with an associated type. We can consider contexts
as finite computads, the generating data for a weak∞-category (see Section 1.1.3). It is
alternatively valid to consider contexts in Catt as finitely generated∞-categories. The
set of contexts contains all finite globular sets (and hence all pasting diagrams).

• Terms over a context Γ correspond to the operations from Section 1.1.2. Terms can
either be a variable, which corresponds to the operations which pick a single cell out
of a globular set, or those generated by the unique constructor Coh, which correspond
to the operations generated by lifting. A term over a context Γ can also be seen as an
element of the free∞-category generated from Γ.

• Types over a contextΓ consist of a collection of terms over the same context, and contain
the boundary information for a term. Types either take the form of the constructor ∗,
the type of 0-cells (which have no boundary data), or an arrow type s→A t, where
s and t are terms giving the source and target of the boundary and the type A gives
lower-dimensional boundary information. This can be viewed as a directed version of
the equality type s =A t from Martin-Löf type theory.

• Substitutions from a context Γ to a context∆ are a mapping from variables of Γ to terms
of ∆. These play the role of functors between the∞-categories generated by Γ and ∆
and are also syntactically crucial for forming compound composites in the theory.

∅ : Ctx
Γ : Ctx A : TypeΓ

Γ, (x : A) : Ctx

〈〉 : ∅ → Γ

σ : ∆→ Γ t : TermΓ A : Type∆
〈σ, t〉 : ∆, (x : A)→ Γ

⋆ : TypeΓ

A : TypeΓ s : TermΓ t : TermΓ

s→A t : TypeΓ

x ∈ Var(Γ)
x : TermΓ

∆ : Ctx A : Type∆ σ : ∆→ Γ

Coh(∆ ;A)[σ] : TermΓ

Figure 1.2: Syntax constructions in Catt.

33

The rules for constructing each piece of syntax are given in Figure 1.2. To simplify the no-
tation, we may avoid writing substitutions in a fully nested fashion, writing 〈σ, s, t〉 instead
of 〈〈σ, s〉, t〉, or 〈s〉 instead of 〈〈〉, s〉. We may also omit the subscript in the arrow type. As
opposed to the original paper on Catt, we index terms, types, and substitutions over contexts,
allowing us to avoid any problems with substitution only extending to a partial operation on
terms. We writeCtx for the set of contexts, TermΓ for the set of terms in a context Γ, TypeΓ for
the set of types in a context Γ, and write σ : ∆→ Γ when σ is a substitution taking variables
of ∆ to terms of Γ.

Remark 1.2.1. In the literature, substitutions are often written as going in the opposite di-
rection. We emphasise here that the direction of our substitution morphisms agrees with
the direction of the function from variables to terms, the direction of the induced functor
between the ∞-categories freely generated from the domain and codomain contexts, and
the direction of arrows in a Grothendieck coherator.

We write≡ for syntactic equality, up to renaming of variables and α-equivalence. The various
pieces of syntax will be considered as equal up to this relation, which can be achieved by using
a de Bruijn index representation of the syntax as we present in Chapter 2 for the formalisation.
However, we continue to use named variables in the prose of the thesis to aid readability,
assuming that all variables in a context are always distinct. We contrast this with the equality
symbol,=, which will represent the equality derived from extra equality rules we have placed
on Catt in Section 2.2, and will be referred to as definitional equality.

The action of a substitution σ : ∆→ Γ can be extended from variables to all terms t ∈ Term∆,
types A ∈ Type∆, and substitutions τ : Θ→ ∆ by mutual recursion:

xJσK = t if (x 7→ t) ∈ σ
Coh(Θ ;A)[τ]JσK = Coh(Θ ;A)[τ • σ]

⋆JσK = ⋆

s→A tJσK = sJσK→AJσK tJσK
〈〉 • σ = 〈〉

〈τ, t〉 • σ = 〈τ • σ, tJσK〉
For every context Γ, there is an identity substitution idΓ, which sends every variable to it-
self, which along with composition of substitutions above gives a category of contexts and
substitutions.

The coherence constructorCoh(∆ ;A)[σ] allows us to construct lifts between parallel operations
over pasting diagrams. The context ∆ plays the role of the pasting diagram. The type A will
always be of the form s→B t, and the terms s and t play the role of the parallel operation
(with the type s→B t being well-formed ensuring that s and t are parallel). The substitu-
tion σ : ∆ → Γ holds the data of a set of arguments to the coherence, allowing compound
composites/operations to be formed and taking the role of composition of morphisms in the
coherator.

We next define the free variables of each piece of syntax. These will be used to encode the
condition of an operation being algebraic from the theory of non-invertible coherators. Let
Var(Γ) denote the variables of Γ. For a term t ∈ TermΓ, a type A ∈ TypeΓ and a substi-
tution σ : ∆ → Γ we define their free variables FV(t), FV(A), FV(σ) ⊆ Var(Γ) by mutual

34

recursion.

FV(x) = {x} if x is a variable
FV(Coh(∆ ;A)[σ]) = FV(σ)

FV(⋆) = {}
FV(s→A t) = FV(s) ∪ FV(A) ∪ FV(t)

FV(〈〉) = {}
FV(〈σ, t〉) = FV(σ) ∪ FV(t)

The free variables of a term are often the wrong notion to use for testing algebraicity. For
example in the context D1, the term d1 has free variables {d1}, whereas the unary composite
of d1, Coh(D1 ; d

−
0 →⋆d

+
0)[idD1], has free variables {d−0 , d+0 , d1}. To remedy this, the original paper

considers FV(t) ∪ FV(A), for a term t of type A. In this thesis we instead define the support
of each piece of syntax as a purely syntactic construction.

Definition 1.2.2. Fix a context Γ. The subset V ⊆ Var(Γ) is downwards closed if for all
(x : A) ∈ Γ we have:

x ∈ V =⇒ FV(A) ⊆ V

The downwards closure of a set V in a context Γ, DCΓ(V) can be defined by induction on
the context:

DC∅(∅) = ∅

DCΓ,x:A(V) =

{
DCΓ(V) if x 6∈ V
{x} ∪ DCΓ(V ∪ FV(A)) if x ∈ V

The support of a term, type, or substitution is then defined as the downwards closure of its
free variables:

Supp(t) = DCΓ(FV(t)) Supp(A) = DCΓ(FV(A)) Supp(σ) = DCΓ(FV(σ))

for terms t ∈ TermΓ, types A ∈ TypeΓ, and substitutions σ : ∆→ Γ.

We will see later (Lemma 2.4.25(iv)) that for well-formed terms t of typed A that the support
of t is equal to FV(t) ∪ FV(A) and that Supp(A) = FV(A) for well-formed types. Modifying
Catt to use the support operation therefore does not change the theory.

We lastly define the dimension of types, contexts, and terms. For types this is defined recur-
sively:

dim(⋆) = 0 dim(s→A t) = 1 + dim(A)

For contexts, we define dim(Γ) to be the maximum of the dimension of each type in Γ. For
coherences Coh(Γ ;A)[σ], the dimension is given by dim(A), and for variables the dimension is
given by the dimension of the associated type in the context.

1.2.2 Ps-contexts
We need to be able to describe pasting diagrams within the theory Catt. As contexts model
globular sets it is natural to treat pasting diagrams as a subset of contexts. We will build

35

pasting diagrams by iteratively attaching discs to a context, which is done by introducing the
judgements:

∆ `ps x : A and ∆ `ps

If the first judgement holds, then ∆ is a pasting diagram for which a disc can be attached to
the variable x, called a dangling variable, which has type A. The contexts ∆ for which the
second judgement holds are fully formed pasting diagrams, which we call ps-contexts (short
for pasting scheme contexts). The rules for these judgements are given in Figure 1.3.

We note that these rules do not just specify which globular sets are pasting diagrams, but they
also specify an ordering on the elements of the pasting diagram, ensuring that there is a unique
ps-context for each pasting diagram. For example, the following judgement holds:

(x : ⋆), (y : ⋆), (f : x→⋆ y), (z : ⋆), (g : y →⋆ z) `ps (1.2.3)

However, the context:

(y : ⋆), (z : ⋆), (g : y →⋆ z), (x : ⋆), (f : x→⋆ y)

represents the same globular set but is not a ps-context.

(x : ⋆) `ps x : ⋆
(pss)

Γ `ps x : A

Γ, (y : A), (f : x→A y) `ps f : x→A y
(pse)

Γ `ps x : s→A t

Γ `ps t : A
(psd)

Γ `ps x : ⋆

Γ `ps
(ps)

Figure 1.3: Rules for ps-contexts.

Example 1.2.4. Judgement 1.2.3 is given by the following derivation:

(pss)
(x : ⋆) `ps x : ⋆

(pse)
(x : ⋆), (y : ⋆), (f : x→⋆ y) `ps f : x→⋆ y (psd)

(x : ⋆), (y : ⋆), (f : x→⋆ y) `ps y : ⋆
(pse)

(x : ⋆), (y : ⋆), (f : x→⋆ y), (z : ⋆), (g : y →⋆ z) `ps g : y →⋆ z (psd)
(x : ⋆), (y : ⋆), (f : x→⋆ y), (z : ⋆), (g : y →⋆ z) `ps z : ⋆ (ps)

(x : ⋆), (y : ⋆), (f : x→⋆ y), (z : ⋆), (g : y →⋆ z) `ps

The applications of (pse) allow new variables to be added to the context, by adding a fresh
variable, and attaching a variable from the dangling variable to the new fresh variable. The
rule (psd) encodes that if we can attach a variable to f : x → y, then we can also attach
a variable to y. The rule (ps) forces as many (psd) rules to be applied as possible before
completing the derivation, ensuring that derivations of ps-contexts are unique.

36

Wenow state the following theorem, which follows immediately from [BFM24,Theorem 53].

Theorem 1.2.5. The set of ps-contexts is in bijection with the set of pasting diagrams.

In order to use ps-contexts as our notion of pasting diagram, we need to be able to identify the
source and target variables of each ps-context. This will be done by specifying the dimension
i source and target of each pasting context.

More precisely, for each ps-context Γ and i ∈ N, we define a ps-context ∂i(Γ) and subcontext
inclusions:

δ−i (Γ) : ∂i(Γ)→ Γ and δ+i (Γ) : ∂i(Γ)→ Γ

Intuitively, the context ∂i(Γ) can be constructed by removing any variables of dimension
greater than i from Γ, and quotienting the dimension i variables by the (symmetric transi-
tive closure of the) relation x ∼ y if there exists an f : x → y. The inclusions then send
this quotiented variable to the variable appearing first in the equivalence class for the source
inclusion, and the variable appearing last in the class for the target inclusion.

These contexts and substitutions can be defined by recursion on the context Γ:

∂i((x : ⋆)) = (x : ⋆)

∂i(Γ, (y : A), (f : x→A y)) =

{
∂i(Γ) if i ≤ dim(A)

∂i(Γ), (y : A), (f : x→A y) otherwise
δϵi ((x : ⋆)) = 〈x〉

δϵi (Γ, (y : A), (f : x→A y)) =


δϵi (Γ) if i < dim(A)

δ−i (Γ) if i = dim(A) and ϵ = −
replace(δ+i (Γ), y) if i = dim(A) and ϵ = +

〈δϵi (Γ), y, f〉 otherwise

where ϵ ∈ {−,+} and replace(〈σ, s〉, t) = 〈σ, t〉. As it will be common to take the boundary
of Γ at the dimension below the dimension of Γ itself, we write

δϵ(Γ) = δϵdim(Γ)−1(Γ)

when dim(Γ) is not zero.

In the original Catt paper, these inclusion substitutions are not given and instead the source
and target variables are given directly as subcontexts. It can be easily checked that the free
variables of the inclusions are equal to the subcontexts, and that the free variable sets of
these inclusions are downwards closed. It is known, e.g. from [BFM24, Lemma 55], that these
constructions agree with the constructions of the source and target pasting diagrams in Sec-
tion 1.1.1.

We state the following well-known result (see [FM17]) about isomorphisms between pasting
contexts.

Proposition 1.2.6. Let Γ and ∆ be ps-contexts and suppose σ : Γ → ∆ is an isomorphism.
Then Γ ≡ ∆ and σ is the identity substitution.

37

1.2.3 Typing for Catt
We now have all the prerequisites in place to state the typing rules for Catt. These take
the form of 4 judgements (not including the judgements for ps-contexts introduced in Sec-
tion 1.2.2):

Γ ` Γ ∈ Ctx is a well-formed context.
Γ ` A A ∈ TypeΓ is a well-formed type in context Γ.
Γ ` t : A t ∈ TermΓ is a well-formed term of type A ∈ TypeΓ.
Γ ` σ : ∆ σ : ∆→ Γ is a well-formed substitution.

The typing rules for these judgements are then given in Figure 1.4. As most of these are
standard we draw attention to a couple of the key rules. The rule for arrow types ensures that
both the source and target of the arrow themselves have the same type, namely the one given
in the subscript of the arrow. This effectively ensures the globular nature of the type theory,
as given a term f : s→x→Ay t, both the source of the source and source of the target are x,
and both the target of the source and target of the target are y.

∅ `
Γ ` Γ ` A
Γ, (x : A) ` Γ ` ⋆

Γ ` s : A Γ ` A Γ ` t : A
Γ ` s→A t

Γ ` 〈〉 : ∅
Γ ` σ : ∆ Γ ` t : AJσK

Γ ` 〈σ, t〉 : ∆, (x : A)

(x : A) ∈ Γ

Γ ` x : A

∆ `ps ∆ ` s→A t
Γ ` σ : ∆ dim(∆) 6= 0 Supp(s) = Supp(δ−(∆)) Supp(t) = Supp(δ+(∆))

Γ ` Coh(∆ ; s→At)[σ] : sJσK→AJσK tJσK
∆ `ps ∆ ` s→A t Γ ` σ : ∆ Supp(s) = Supp(t) = Var(∆)

Γ ` Coh(∆ ; s→At)[σ] : sJσK→AJσK tJσK
Figure 1.4: Typing rules for Catt.

There are two rules given for typing coherence, corresponding to the two guiding principles
for categories from Section 1.1.2. The first rule allows composites to be typed and the second
allows equivalences to be typed. In both, the ps-context ∆ corresponds to the pasting dia-
gram P , the terms s and t correspond to the operations f and g over P (with the judgement
∆ ` s→A t enforcing that they are parallel), and the conditions involving support give the
remaining side conditions.

By a straightforward mutual induction we can prove that application of substitution to terms,
types, and other substitutions preserves typing. Therefore, the syntactic category of Catt
can be formed, which contains well-formed contexts as objects and well-formed substitutions
between these contexts as morphisms, which by an abuse of notation we call Catt. There is a
full subcategory Cattps, which only contains the contexts which are ps-contexts.

38

Theorem 1.2.7. The category Cattps is a coherator for∞-categories.

Proof. Follows from [BFM24, Theorem 73], noting that the opposite convention for substi-
tution is used in that paper.

Thus, we immediately get that a presheaf over Cattps which preserves globular products is an
∞-category (using the Maltsiniotis definition). Further, presheaves of this form are equivalent
to type-theoretic models of Catt by [BFM24, Theorem 88], meaning type-theoretic models of
Catt are∞-categories.

1.2.4 Basic constructions
We now introduce some examples of basic categorical operations in order to give some early
examples. Suppose we have terms a : s→⋆ t and b : t→⋆ u in some context Γ. Then the
ps-context

∆ = (x : ⋆), (y : ⋆), (f : x→⋆ y), (z : ⋆), (g : y →⋆ z)

from Judgement 1.2.3 can be used to form the 1-composite:

a ∗0 b = Coh(∆ ;x→⋆z)[〈s, t, a, u, b〉]

It is often not necessary to give all the terms in a substitution, especially when the substitution
is from a pasting diagram (or more generally a globular set). In these cases it is sufficient to
give terms for the locally maximal variables of the context, those that do not appear as the
source or target of another variable. For∆, the locally maximal variables are f and g, and so it
suffices to give the substitution above as 〈a, b〉, with the rest of the terms being inferable.

The disc contextsDn can be formed in Catt as the analogue of the disc globular sets given in
Example 1.1.2 and satisfy the property that a substitution from a disc contextDn contains the
same data as a term and n-dimensional type. Given a term t of type A in context Γ, we write
this substitution {A, t} : Ddim(A) → Γ. All disc contexts are ps-contexts.

Using these, the identity can be formed on a term t of type A in Γ:

id(A, t) = Coh(Dn ; dn→dn)[{A, t}]

where dim(A) = n, which is typed using the rule for equivalences. The structure of this term
changes for different values of n, and we will relate these different terms in Section 1.2.5. As
before, the non-locally maximal elements of a substitution can be inferred, and so we may
write id(t) or {t} when the type A is inferable. In Catt, all types are inferable, though later
when we consider semistrict variations of Catt it may be necessary to specify the exact type
we are using up to syntactic equality.

Standard coherences The composite and identity above form part of a more general collec-
tion of coherences, which we call standard coherences.

Definition 1.2.8. Given a pasting diagram ∆, we mutually define for all n the standard

39

coherence Cn∆, the standard term T n∆ , and the standard type Un∆:

Cn∆ = Coh(∆ ;Un
∆)[id∆]

T n∆ =

{
dn when ∆ is the disc Dn

Cn∆ otherwise
U0
∆ = ⋆

Un+1
∆ = T n∂n(∆)Jδ−n (∆)K→Un

∆
T n∂n(∆)Jδ+n (∆)K

The standard type takes the standard term over each boundary of∆, includes these all back
into ∆ and assembles them into a type. When n = dim(∆) we will refer to the standard
coherence as the standard composite.

Intuitively, the standard coherence Cn∆ is the canonical composite in dimension n of the pasting
diagram ∆. To give this a type is needed to form the coherence, for which the standard type
Un∆ is used. The standard term T n∆ is used as a variant of the standard coherence which special
cases disc contexts. This avoids the standard type containing unary composites and allows
standard composites (of non-disc contexts) to be normal forms of the reduction systems that
will be described in Chapter 4.

It is immediate that the composite of 1-cells a ∗0 b is given by C1∆J〈a, b〉K and the identity on
a term t of dimension n is given by Cn+1

Dn J{t}K. This construction can be used to generate all
the composites in the definition of a strict∞-category. For example the vertical composite of
2-cells is the standard composite over the context given by the diagram:

x y

f

h

g

α

β

and the horizontal composite of 2-cells is the standard composite over:

x y z

g

f

i

h

α β

Noting that the standard type over the above diagram has source f ∗ h and target g ∗ i, them-
selves being standard compositions demonstrating the mutual recursive behaviour of these
constructions.

Remark 1.2.9. Above we gave two ps-contexts by drawing a diagram of the globular set that
they represent. Ps-contexts fix the order that variables occur in and as such the mapping
from ps-contexts to globular sets is injective. The use of diagrams to define ps-contexts is
therefore unambiguous.

Further examples The substitution component of a coherence allows operations to be com-
bined into compound operations. Consider the (Ps-)context given by the following diagram:

Γ = s t u va b c

40

There are (at least) 3 ways to compose together the elements of this context. We could take
the unbiased ternary composite a ∗ b ∗ c = C1ΓJ〈a, b, c〉K, but could also construct either biased
composite:

(a ∗ b) ∗ c = C1∆J〈C1∆J〈a, b〉K, c〉K
a ∗ (b ∗ c) = C1∆J〈a, C1∆J〈b, c〉K〉K

Using the equivalence typing rule, we can relate these biased composite with the following
term:

αa,b,c = Coh(Γ ; (a∗b)∗c→a∗(b∗c))[idΓ]

which is the associator. Similarly, for a term f : x→⋆ y, unitors can be formed over the disc
context D1 using the equivalence rule:

λf = Coh(D1 ; id(d−0)∗d1→d1)
[{f}]

ρf = Coh(D1 ; d1∗id(d−0)→d1)
[{f}]

The remainder of the operations for a 2-category can be defined similarly, as each displays
the equivalence of two terms built over a pasting diagram. We observe that both the unitors
and associator (as well as any coherence typed with the equivalence rule) are trivially invert-
ible.

1.2.5 Suspension
To end this section, we introduce the meta-operation of suspension, as described for Catt by
Benjamin [Ben20]. Suspension takes any piece of syntax as input and produces one with a
dimension one higher. It can be used as an aid to defining operations in Catt, but will also
form a key part of the formal development of the constructions described in Chapter 3.

Suspension is inspired by the identically named operation on topological spaces. Given a
topological space X , its suspension ΣX is formed by quotienting the space X × [0, 1] by the
relation that identifies all points of the form (x, 0) for x ∈ X and identifies points (x, 1) for
x ∈ X .

The suspension on a space X can be alternatively viewed as the space containing two distin-
guished points N and S, and a path from N to S for each point x ∈ X . The names N and S
stand for north and south, as the suspension of a circle can be visualised as a globe, withN and
S being the north and south pole and each of the paths between them being a meridian.

A similar operation can be applied to globular sets. Given a globular setG, its suspension ΣG
is obtained by shifting the dimension of every n-cell up by one (making it into an (n+1)-cell),
adding two new 0-cells N and S, and letting the source of every 1-cell be N and the target be
S. The globularity conditions for this construction can be quickly verified.

This construction extends to all computads [BM24], and can be defined in Catt by mutually
defining the operation on contexts, types, terms, and substitutions.

Definition 1.2.10. For contexts Γ ∈ Ctx, types A ∈ TypeΓ, terms t ∈ TermΓ, and
substitutions σ : ∆ → Γ, we define their suspensions Σ(Γ) ∈ Ctx, Σ(A) ∈ TypeΣ(Γ),

41

Σ(t) ∈ TermΣ(Γ), and Σ(σ) : Σ(∆)→ Σ(Γ) by mutual recursion.

Σ(∅) = (N : ⋆), (S : ⋆) Σ(Γ, (x : A)) = ΣΓ, (x : ΣA)

Σ(⋆) = N →⋆ S Σ(s→A t) = Σs→ΣA Σt

Σ(〈〉) = 〈N,S〉 Σ(〈σ, x〉) = 〈Σ(σ),Σ(t)〉
Σ(x) = x Σ(Coh(∆ ;A)[σ]) = Coh(Σ(∆) ;Σ(A))[Σ(σ)]

where x is a variable of Γ.

The dimension shift of suspension is driven by the cases for types, especially the case for the
base type ⋆, which returns a type of dimension 1, namelyN →⋆ S, using the two new variables
N and S. We note that the suspension of any ps-context is also a ps-context, and in general
the suspension of any piece of well-formed Catt syntax can be well-formed. These results are
given in [Ben20, Section 3.2], but will be proved in Section 2.4 in more generality.

We can now investigate the action of suspension on the operations we have already defined.
Take the context:

(x : ⋆), (y : ⋆), (f : x→⋆ y), (z : ⋆), (g : y →⋆ z)

used in Section 1.2.4 to generate 1-composition. Applying suspension to this context gives:

N S

x

z

y

f

g

which is the context used to generate vertical 2-composition. Furthermore, applying suspen-
sion directly to 1-composition operation forms the vertical 2-composition operation.

The suspension of each disc context Dn is (up to α-renaming) Dn+1. It can be checked that
applying suspension to the identity operation for n-dimensional terms returns the identity
operation for (n + 1)-dimensional terms. Repeating this logic, all identity operations can be
obtained as iterated suspensions of the identity for 0-cells. The following more general result
about standard coherences holds:

Proposition 1.2.11. The following syntactic equalities hold:

Σ(Cn∆) = Cn+1
Σ(∆) Σ(T n∆) = T n+1

Σ(∆) Σ(Un∆) = Un+1
Σ(∆)

for all ps-contexts ∆ and n ∈ N.

The proof of these results is delayed to Chapter 3, where we will have more tools for dealing
with these constructions.

42

Chapter 2

A formalised presentation of Catt with
equality

The main purpose of this chapter will be to define the family of type theories CattR, which
extend the base type theory Catt with a specified setR of equality rules. These equality rules
equate various terms of the theory, which unifies the corresponding operations their models,
allowing us in Chapter 4 to generate type theories that model semistrict categories, categories
where some but not all structure is strictified.

This chapter will also introduce theAgda formalisation [Ric24a]which accompanies this thesis,
which compiles with Agda v2.6.4 and standard library v2.0. The formalisation implements the
syntax and typing judgements of CattR, and contains proofs of most results in this chapter
and Chapter 3. By formalising CattR, instead of the more specific type theories Cattsu and
Cattsua introduced in Sections 4.2 and 4.3, the formalisation of many results can be applied to
both type theories. This also allows these results to be applied to any future type theories of
this form.

A dependency graph of the formalisation is given in Figure 2.2, and an online version of this
graph can be found at https://alexarice.github.io/catt-agda/dep-graph.svg for which
each node is a clickable link to an HTML version of the code. This graph was generated by
processing the dependency graph output of Agda with the tool sd-visualiser [HRT24].

2.1 Extended substitution
CattR uses the same syntax as Catt with one exception. In CattR we make a natural gener-
alisation to substitutions, which will allowmore operations to be defined for working with the
suspension operation introduced in Section 1.2.5. Unfortunately, the full utility of this gener-
alisation will not be realised until Section 3.3, but we choose to introduce it here as it forms a
core part of the syntax, and requires little modification to the rules of the type theory.

We recall that the suspension operation Σ acts on contexts, substitutions, types, and terms.
Given a substitution σ : ∆ → Γ, its suspension Σ(σ) has domain Σ(∆) and codomain Σ(Γ).
When we define trees and tree labellings in Chapter 3, which will be used to define the inser-
tion operation in Section 3.4, we will need to be able to define substitutions from suspended
contexts to arbitrary contexts. More generally, we would like to be able to describe substitu-

43

https://alexarice.github.io/catt-agda/dep-graph.svg

tions of the form:
Σn(∆)→ Γ

where Σn(∆) is the operation that applies suspension n times to ∆.

Consider the data contained in a substitution τ : Σ(∆) → Γ. There are two terms NJτK
and SJτK of type ⋆, and then a term for each variable of ∆. Temporarily ignoring the typing
conditions for substitutions, we see that the data is equivalent to a substitution from ∆ to Γ
and two additional terms.

If we now consider a substitution τ : Σ(Σ(∆)) → Γ, we notice that there is a term in Γ for
each variable of ∆, as well as two terms s = NJτK and t = SJτK for the outer suspension
and terms u = N ′JτK and v = S ′JτK for the inner suspension. As before, the terms s and t
should have type ⋆, but the terms u and v should have type s→⋆ t. We note that this is the
exact condition needed for u→s→⋆t v to be a well-formed type. This motivates the notion of
an extended substitution, which is obtained by equipping a substitution with a type.

We have not yet determined the typing conditions required on the substitution part of these
extended substitutions. We return to the example of a substitution τ : Σ2(∆) → Γ, and
suppose that ∆ has a variable x of type ⋆. In Σ2(∆), x has the type N ′ →N→⋆S S

′, and so x
should be sent to a term of type u→s→⋆t v, the type portion of the extended substitution. In
a substitution σ : ∆ → Γ, x would be sent to a term of type ⋆JσK, which suggests that ⋆JσK
should be redefined to send ⋆ to the type part of the extended substitution.

This one change to the application of substitution to types is sufficient to generalise from
substitutions to extended substitutions. An extended substitution σ : ∆→ Γ then has the fol-
lowing intuition: The substitution part specifies where each variable in ∆ should be sent, and
the type part specifies where the base type ⋆ should be sent. The other cases for the applica-
tion of substitution extend this to all terms, types, and (extended) substitutions as before. The
extended substitution σ then represents a standard substitution Σn(∆) to Γ, where n is the
dimension of the type part of σ. Hence, a regular substitution can be recovered as an extended
substitution with type part ⋆.

We modify the syntax of Catt as follows, and will refer to these extended substitutions simply
as substitutions, as extended substitutions are a direct generalisation of substitutions, and the
notion of substitution is still recoverable by setting the type part to ⋆:

• Substitutions will now be indexed by a type of their codomain context, which we will
write σ : ∆→A Γ where A ∈ TypeΓ. We note that this allows us to specify that σ is a
regular substitution by writing σ : ∆→⋆ Γ.

• The constructor 〈〉 is removed, and is replaced by the constructor 〈A〉 : ∅ →A Γ, where
A ∈ TypeΓ. Adding a term to a substitution preserves the type of the substitution. As
before we may write a substitution 〈〈〈A〉, s〉, t〉 as 〈A, s, t〉. We let FV(〈A〉) = FV(A).

• An operation Ty(σ) is introduced that returns the type portion of a substitution. For
σ : ∆→A Γ, we have Ty(σ) = A.

• Coherences Coh(∆ ;A)[σ] ∈ TermΓ are restricted so that σ is a regular substitution. In
other words Ty(σ) must be ⋆ for σ to appear in a substitution. While this condition
could be dropped, it is convenient to keep the same operations as Catt.

44

Towitness the equivalence of extended substitutions∆→ Γ and regular substitutionsΣn(∆)→
Γ, we introduce new operations.

Definition 2.1.1. For a substitution σ : ∆→s→At Γ, we define its unrestriction:

↓σ : Σ(∆)→A Γ

by induction on the length of ∆:

↓〈s→A t〉 = 〈A, s, t〉
↓〈σ′, u〉 = 〈↓ σ′, u〉

The unrestrict operation simply moves two terms from the type part of the substitution into
the main body of the substitution.

To define the second operation, we need to first specify the changes to application of substitu-
tion:

• The composition of substitutions takes substitutions σ : Θ→A ∆ and τ : ∆→B Γ to a
substitution σ • τ : Θ→AJτK Γ.

• For a substitution σ : ∆→A Γ, we define ⋆JσK = A.

• As the substitution in a coherence must have type ⋆, we define the application of an
extended substitution τ : ∆→s→At Γ to a coherence as:

Coh(Θ ;A)[σ]JτK = Coh(Σ(Θ) ;Σ(A))[Σ(σ)]J↓ τK
The case for applying a regular substitution to a coherence remains unchanged.

We can now define an inverse to the unrestriction operation.

Definition 2.1.2. For a substitution σ : Σ(∆)→A Γ, its restriction

↑σ : ∆→NJσK→ASJσK Γ
is defined by induction on the length of ∆:

↑〈A, s, t〉 = 〈s→A t〉
↑〈σ′, u〉 = 〈↑ σ′, u〉

Inversely to the unrestrict operation, the restrict operation moves two terms into the type
part of the substitution.

As restriction and unrestriction cancel each other, the suspension of the substitution σ :
∆→⋆ Γ can be factored into (↓ ◦(↑ ◦Σ))(σ). We observe that the second part of this composi-
tion, ↑ ◦Σ, is the operation that simply applies the suspension to each term in the substitution
as well as the type of the substitution. This motivates the final definition of this section.

Definition 2.1.3. Let the restricted suspension of a substitution σ : ∆→A Γ be a substitution

Σ′(σ) : ∆→Σ(A) Σ(Γ)

45

defined inductively by the equations:

Σ′(〈A〉) = 〈Σ(A)〉
Σ′(〈σ′, t〉) = 〈Σ′(σ′),Σ(t)〉

The suspension of a substitution τ : ∆→⋆ Γ can be defined by Σ(τ) = ↓Σ′(τ).

For the rest of the thesis and the formalisation, the suspension on a substitution is defined as
the composition of unrestriction and restricted suspension.

2.2 CattR: Catt with equality
This section will define the type theory CattR, a variation of Catt with specified equality
rules. This section, in addition to the following sections in this chapter, will be used tomotivate
certain choices in the formalisation. All the preliminary definitions as well as syntax, typing,
and equality rules are assembled in Figure 2.1.

2.2.1 Syntax
The syntax of CattR is based on the syntax of Catt with the changes specified in Section 2.1.
This creates a dependence chain of needing to define the base syntax before suspension can
be defined, and needing to define suspension before application of substitution can be defined.
In the formalisation these are defined in the following files:

• The core syntax is defined in Catt.Syntax.Base.

• Suspension is defined in Catt.Suspension.

• Other syntactic operations are defined in Catt.Syntax, which re-exports the core syntax.

To avoid any issues with α-equivalence, especially as we have terms that contain contexts, we
work with de Bruijn indices throughout the formalisation. This means that a context is simply
a vector of types, a fixed length list, which are given a nicer syntax. Variables are then simply
bounded natural numbers, represented by the sets Finn, where Finn is the set {0, . . . , n − 1}.
Given a context A,B,C , the variables over this context are simply var 0, which has type C ,
var 1, which has type B, and var 2, with type A. We note that 3 is not in Fin3, and so var 3
is not a term of this context. Hence, we do not need to deal with unknown variables when
applying substitutions. We will still make use of variable names in this text to aid readability,
and will ignore any potential problems that could arise from this, knowing that the results are
formalised in a setting where they do not appear.

The formalisation also differs from the presentation in the texts by the way that the various no-
tions of syntax are indexed. We index contexts by a natural number representing their length,
and then index terms, types, and substitutions over these lengths instead of indexing them
by their context. We then get the following 4 syntactic classes defined as mutually inductive
families, where U is a type universe:

Ctx : N→ U Type : N→ U Term : N→ U Sub : (n m : N)→ Typem → U

This decision was made purely for convenience, by indexing by natural numbers instead of
contexts, we sometimes avoid the need for providing more explicit arguments to syntactic

46

https://alexarice.github.io/catt-agda/Catt.Syntax.Base.html
https://alexarice.github.io/catt-agda/Catt.Suspension.html
https://alexarice.github.io/catt-agda/Catt.Syntax.html
https://alexarice.github.io/catt-agda/Catt.Syntax.Base.html#Ctx
https://alexarice.github.io/catt-agda/Catt.Syntax.Base.html#Ty
https://alexarice.github.io/catt-agda/Catt.Syntax.Base.html#Tm
https://alexarice.github.io/catt-agda/Catt.Syntax.Base.html#Sub

constructions. It comes with drawback that the context must be provided for certain opera-
tions, such as the support of a piece of syntax, or the dimension of a term.

One place an explicit argument can be avoided is when defining the weakening of a piece of
syntax, an operation witnessing that for a piece of syntax living in a context Γ, there is a copy
living in Γ, A for any A. These operations are defined in Catt.Syntax and take the following
form, where we re-use the name wk here as an abuse of notation:

wk : TermΓ → TermΓ,A wk : TypeΓ → TypeΓ,A wk : (Γ→B ∆)→ (Γ→wk(B) ∆, A)

If terms are indexed by contexts then this type A must often be specified, though if they are
instead indexed by context length then this is no longer necessary. When using de Bruijn
indices, this operation is no longer the identity on terms, as each variable must be incremented
due to the index in a variable counting from the end of the context. One might ask why de
Bruijn levels (which index from the start of the context) were not used instead, but this would
not solve our problem as Finn is not a subtype of Finn+1 in Agda. Furthermore, using de Bruijn
levels would cause the substitution application introduced in Section 1.2.1 (and expanded in
Section 2.1) to compute poorly, due to the way substitutions are defined. The definition of
weakening is given in Figure 2.1i.

Weakening can be used to give a short inductive definition of the identity substitution, a sub-
stitution idΓ : Γ→ Γ which sends every variable to itself. On the inductive case idΓ,(x:A), it is
clear that the variable x should be sent to x, but the constructor for substitutions also requires
a substitution Γ → Γ, (x : A). This can be obtained by weakening a recursive call to the
identity on Γ. Similarly, an inclusion Γ→ Γ, (x : A) can be defined as wk(idΓ), and applying
this substitution is the same operation as weakening.

To begin proving syntactic properties of CattR, we need a notion of syntactic equality. This
will be written Γ ≡ ∆ for contexts Γ and ∆, and similarly for terms s and t, types A and B,
and substitutions σ and τ . It is given by α-equivalence, and so we would hope that the formali-
sation could leverage the use of de Bruijn indices to use the in-built equality type for syntactic
equality. This is too restrictive however, there will be many times when we want to compare
two terms of differing context length (in practice this context length will be propositionally
equal, instead of definitionally equal).

Therefore, four syntactic equality relations are defined mutually inductively on the construc-
tors of each piece of syntax in Catt.Syntax.Properties. These definitions can easily be hetero-
geneous, allowing two terms s : Termn and t : Termm to be compared. Unfortunately, using
these comes at the cost of large amounts of boilerplate, as these inductively defined equalities
do not come equipped with the J-rule, and so it must be manually proved that each operation
respects syntactic equality. An example of such a function is wk-tm-', which states that the
weakenings of two syntactically equal terms are syntactically equal.

Catt.Syntax.Properties contains many of the basic properties about the syntax of CattR, in-
cluding:

• Syntactic equality is decidable.

• Syntactic equality is propositional, there is at most one proof of s ≡ t.

• Functoriality of suspension.

47

https://alexarice.github.io/catt-agda/Catt.Syntax.html
https://alexarice.github.io/catt-agda/Catt.Syntax.html#wk-tm
https://alexarice.github.io/catt-agda/Catt.Syntax.html#wk-ty
https://alexarice.github.io/catt-agda/Catt.Syntax.html#wk-sub
https://alexarice.github.io/catt-agda/Catt.Syntax.Properties.html
https://alexarice.github.io/catt-agda/Catt.Syntax.Properties.html#wk-tm-≃
https://alexarice.github.io/catt-agda/Catt.Syntax.Properties.html

• Interaction of weakening with substitution application. We have wk(s)J〈σ, t〉K ≡ sJσK
and sJwk(σ)K ≡ wk(sJσK) and equivalent lemmas for the application of substitution to
types and substitutions.

It also contains the following proposition.

Proposition 2.2.1. Application of substitution is associative and unital with respect to the
identity substitution. More precisely, given substitutions σ : Θ→A ∆ and τ : ∆→B Γ, the
following equalities hold:

AJσKJτK ≡ AJσ • τK AJidKΘ ≡ A

tJσKJτK ≡ tJσ • τK tJidKΘ ≡ t

(µ • σ) • τ ≡ µ • (σ • τ) µ • idΘ ≡ µ idΞ • µ ≡ µ

for types A ∈ TypeΘ, terms t ∈ TermΘ, and substitutions µ : Ξ→C Θ.

Proof. The last equation is a simple induction on µ (and the context Ξ). Both the unitality
equations and associativity equations, as with the vastmajority of syntactic proofs, are given
by mutual induction on types, terms, and substitutions. The only difficult case is:

Coh(Θ ;C)[µ]JσKJτK ≡ tJσ • τK
where the type part of σ : Θ→A ∆ or τ : ∆→B Γ is not ⋆. First suppose B = s→B′ t but
A = ⋆:

Coh(Θ ;C)[µ]JσKJτK ≡ Coh(Θ ;C)[µ • σ]JτK
≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ • σ)]J↓ τK
≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ) • Σ(σ)]J↓ τK
≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ)]JΣ(σ) • ↓ τK
≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ)]J↓(σ • τ)K
≡ Coh(Θ ;C)[µ]Jσ • τK

where the second to last line is given by property
↓(σ • τ) ≡ Σ(σ) • ↓ τ

which holds for all σ : Θ→⋆ ∆ and is proven in ↓-comp, and the line before is given by the
inductive hypothesis.

If instead we had A = s→A′ t, then:
Coh(Θ ;C)[µ]JσKJτK ≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ)]J↓σKJτK

≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ)]J↓σ • τK
≡ Coh(Σ(Θ) ;Σ(C))[Σ(µ)]J↓(σ • τ)K
≡ Coh(Θ ;C)[µ]Jσ • τK

where we use the inductive hypothesis after applying the equality
↓(σ • τ) ≡ ↓ σ • τ

which holds for all σ : Θ→s→A′ t ∆ by ↓-comp-higher.

48

https://alexarice.github.io/catt-agda/Catt.Syntax.Properties.html#↓-comp
https://alexarice.github.io/catt-agda/Catt.Syntax.Properties.html#↓-comp-higher

This proposition proves that the syntax of CattR forms a category, which we will not name as
we will work instead with the subcategory containing well-formed contexts and substitutions,
introduced in the following sections.

Discs We finish our discussion of the syntax of CattR by giving formal definitions of disc
and sphere contexts, some constructions on these, and their properties. This will allow these
to be used as examples in following sections, and pre-empts the use of discs in the first two
equality rules that we will introduce, disc removal and endo-coherence removal.

We begin with the definitions of discs, spheres, and sphere types, which can be found in
Catt.Discs as Disc, Sphere, and sphere-type. We write the sphere type as Un, which is in-
tentionally close to the notation of the standard type Un∆, as it will turn out that these coin-
cide.

Definition 2.2.2. We mutually define the disc contextsDn, sphere contexts Sn, and sphere
type Un ∈ TypeSn .

Dn = Sn, (d−n : Un) S0 = ∅ Sn+1 = Dn, (d+n : wk(Un))

U0 = ⋆ Un+1 = d−n →wk(wk(Un+1)) d
+
n

We will sometimes refer to the last variable of Dn as dn instead of d−n , given that there is
no d+n in the context. We note that the index on the sphere Un is offset by one compared
to the standard definition of the n-sphere in topology. This ensures that the index matches
the dimension of the sphere type and allows these constructions to be indexed by natural
numbers in the formalisation.

We also characterise the substitutions from a sphere or disc. These are given by sub-from-
sphere and sub-from-disc in the formalisation.

Definition 2.2.3. LetA : TypeΓ be a type and suppose n = dim(A). Define the substitution
{A} : Sn → Γ inductively by:

{⋆} = 〈〉 {s→A t} = 〈{A}, s, t〉

Further, given a term t : TermΓ, define the substitution {A, t} : Dn → Γ by {A, t} =
〈{A}, t〉.

In Catt.Discs.Properties, various facts about these constructions are proved which we list be-
low.

Lemma 2.2.4. The following hold:

(i) dim(Dn) = dim(Un) = n and dim(Sn) = max(n− 1, 0).

(ii) Σ(Dn) ≡ Dn+1, Σ(Sn) ≡ Sn+1, and Σ(Un) ≡ Un+1.

(iii) {wk(A)} ≡ wk({A}) and {wk(A),wk(t)} ≡ wk({A, t}).

(iv) {Σ(A)} ≡ Σ({A}) and {Σ(A),Σ(t)} ≡ Σ({A, t}).

49

https://alexarice.github.io/catt-agda/Catt.Discs.html
https://alexarice.github.io/catt-agda/Catt.Discs.html#Disc
https://alexarice.github.io/catt-agda/Catt.Discs.html#Sphere
https://alexarice.github.io/catt-agda/Catt.Discs.html#sphere-type
https://alexarice.github.io/catt-agda/Catt.Discs.html#sub-from-sphere
https://alexarice.github.io/catt-agda/Catt.Discs.html#sub-from-sphere
https://alexarice.github.io/catt-agda/Catt.Discs.html#sub-from-disc
https://alexarice.github.io/catt-agda/Catt.Discs.Properties.html

(v) {AJσK} ≡ {A} • σ and {AJσK, tJσK} ≡ {A, t} • σ.
(vi) UnJ{A}K ≡ A and hence wk(Un)J{A, t}K ≡ A.

(vii) For τ : Sn → Γ, τ ≡ {UnJτK}.
(viii) For τ : Dn → Γ, τ ≡ {wk(Un)JτK, dnJτK}.
for all n ∈ N and appropriate A, t, and σ.

The last two statements finish the characterisation of substitutions from spheres and discs as
all such substitutions are of the form {A} or {A, t} respectively.

In Catt.Discs.Pasting, it is shown that Dn is a ps-context for each n. Therefore, as in Sec-
tion 1.2.4, the identity on a term t of type A can be defined as:

id(A, t) = Coh(Dn ; dn→wk(Un)dn)[{A, t}]

wheren = dim(A). Many properties of identity terms can be easily derived fromLemma 2.2.4.

2.2.2 Typing and equality
The typing rules for CattR differ from those from Catt in three key ways:

1. The fixed conditions on the support of the types in a coherence have been replaced
by a set of operations O. Instead of having two typing rules for coherences, one for
equivalences and one for composites, we simply have one typing rule and specify that
a coherence Coh(∆ ; s→At)[σ] can be well-formed when:

(∆, Supp(s), Supp(t)) ∈ O

This will be further motivated and explained in Section 2.3.

2. A definitional equality is added to the system, generated by a set of equality rules R
which specifies pairs of terms which should be equated. The equality takes the form of
three new judgements:

Γ ` A = B A,B ∈ TypeΓ are equal in context Γ.
Γ ` s = t s, t ∈ TermΓ are equal in context Γ.
Γ ` τ = σ τ : Θ→ Γ and σ : ∆→ Γ are equal.

These judgements are all mutually defined (and are in fact mutually defined with the
typing judgements). We may sometimes abbreviate these judgements to A = B, s = t,
and τ = σ when the contexts of each piece of syntax is clear.

3. The typing rules are adjusted to account for this definitional equality, via the addition
of a conversion rule.

The conversion rule is the only additional typing rule that must be added to CattR, and takes
the following form:

Γ ` s : A Γ ` A = B

Γ ` s : B
conv

50

https://alexarice.github.io/catt-agda/Catt.Discs.Pasting.html

allowing the type of any term to vary up to the definitional equality. This rule accounts for all
the semistrict behaviour in the theories we introduce in Chapter 4.

By adding this rule, and allowing the type of a term to vary up to definitional equality instead
of syntactic equality, we allow more terms in the theory to become composable. Suppose we
have terms f : x → y and g : y′ → z. In Catt, we would not be able to form the vertical
composition of these terms, as y and y′ are not the same. If we now suppose that Γ ` y = y′,
then it will follow that Γ ` (x → y) = (x → y′), and so using the conversion rule we
get:

Γ ` f : x→ y

Γ ` y = y′

Γ ` (x→ y) = (x→ y′)

Γ ` f : x→ y′ Γ ` g : y′ → z

Γ ` f ∗ g : x→ z

We remark that adding definitional equality does not simply quotient the terms of the theory,
but also allows new terms to be well-formed as above.

The definitional equality judgements are given by the rules in Figure 2.1c and appear in the
formalisation alongside the typing rules in Catt.Typing. These are generated by the set of
equality rules R, which is a set of triples of the form (Γ, s, t) where Γ is a context and s, t ∈
TermΓ. The key inference rule for equality is then:

Γ ` s : A (Γ, s, t) ∈ R
Γ ` s = t

Rule

which says that if a triple (Γ, s, t) is in R, then Γ ` s = t if s is well-formed in Γ. The typing
prerequisite forces the definitions of equality and typing to be mutually defined, and ensures
that we only apply our equality rules to well-behaved terms.

We note the asymmetry of this rule, in that only the left-hand side is required to bewell-formed.
Every rule introduced in this thesis will take the form of some reduction from the left-hand side
to the right-hand side, and we will be able to prove that typing for the right-hand side follows
from typing for the left-hand side for every equality we consider. The converse may not hold
in general, necessitating the condition on the left-hand side. This is similar to β-reduction in
the λ-calculus, where an untyped term can reduce to a simply typed term.

The remainder of the inference rules for equality simply close under each constructor, reflex-
ivity, symmetry, and transitivity. It is only necessary to give symmetry and transitivity rules
for terms, and a reflexivity rule for variables, with these properties following for the other
judgements by simple induction.

Lemma 2.2.5. The definitional equality relations on terms, types, and substitutions are equiv-
alence relations, for anyR.

Proof. Proofs of these are found in Catt.Typing.Properties.Base.

It is also possible to prove that each term has a canonical type.

51

https://alexarice.github.io/catt-agda/Catt.Typing.html
https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Base.html

Definition 2.2.6. The canonical type of a term t : TermΓ, Ty(t), is defined by a case split
on t. If t is a variable then the canonical type is the corresponding type in the context Γ.
Otherwise, if t ≡ Coh(∆ ;A)[σ] then the canonical type is AJσK.

This can be used to show that the type of a well-formed term is unique up to definitional
equality, and is equal to this canonical type.

Lemma 2.2.7. If Γ ` s : A, then Γ ` s : ty(s) and Γ ` A = Ty(s). Further, if Γ ` s : A and
Γ ` s : B then Γ ` A = B.

Proof. We prove the first part by induction on the derivation Γ ` s : A. If the derivation is
derived from the conversion rule applied to Γ ` s : B and Γ ` A = B, then by inductive
hypothesis we have Γ ` s : Ty(s) and Γ ` B = Ty(s). By transitivity, we obtain Γ ` A =
Ty(s) as required. The second part follows directly from the applying the first part to both
derivations.

Using the canonical type, we can define the canonical identity on a term.

Definition 2.2.8. Given a term t : TermΓ, let its canonical identity be given by:

id(t) ≡ id(Ty(t), t)

This construction can be iterated, and we say that a term is an iterated canonical identity if
it is on the form idk(t) for some k.

There is not muchmore that can be proved about the definitional equality at this point without
knowing more about the rule set R. In Section 2.4, certain conditions will be imposed on the
set of equality rules, that will allow further lemmas to be proved in large generality.

Disc removal We now give our first example of an equality rule, disc removal. Disc removal
removes unary composites, replacing them with the underlying term. We recall that for every
n, there exists the n-dimensional disc context Dn, and that given a term t ∈ TermΓ and
n-dimensional type A ∈ TypeΓ, there exists a substitution {A, t} : Dn → Γ. The unary
composite of a term t of type A of dimension n is then the coherence:

Coh(Dn ;wk(Un))[{A, t}]

Disc removal equates this with the term t, making the following rule admissible:

Γ ` t : A Γ ` A
Γ ` Coh(Dn ;wk(Un))[{A, t}] = t

dR

with the removal of the disc coherence giving the name to this equality rule.

Assembling disc removal into a rule setR is simple, as it is possible to simply give a syntactic
condition with no need to refer to typing.

Definition 2.2.9. The disc removal rule set, dr, is the set consisting of the triples:

(Γ,Coh(Dn ;wk(Un))[{A, t}], t)

52

for each context Γ, type A : TypeΓ, and term t : TermΓ where n = dim(A).

A set of rules R contains disc removal if dr ⊆ R. Further we say that R has disc removal if
the rule dR holds in the generated theory.

The inference rule dR follows the Rule and typing properties about discs which will be given
in Section 2.4.

We draw attention to the typing premise of Rule. If we know that the unary composite of a
term t is well-formed, then it follows that t itself must have been well-formed, but we cannot
infer that the term Coh(Dn ;wk(Un))[{A, t}] is well-formed from t being well-formed. In partic-
ular, knowing that t is well-formed does not constrainA at all without knowing that the given
type A is the type of t. We must therefore include an additional typing premise if we want to
avoid well-formed and non-well-formed terms being equated.

2.3 The set of operations O
In Section 2.2.2, we introduced a set of operations O, which allows us to vary the operations
available in the theory, much like the set R allows us to vary the equality rules of the theory.
The set O replaces the conditions on the support of the type contained in a coherence, and
consists of a set of triples of a context ∆, along with two sets x, y ⊆ Var(∆). A certain type
s→A t : Type∆ is permitted to appear in a coherence exactly when (∆, Supp(s), Supp(t)) is
an element of O.

There are two key advantages to setting up the theory this way.

• A clear separation is introduced in themetatheory and formalisation between properties
that are specific to the support conditions in Catt and those that are independent of the
specific support conditions present.

• The results in the following sections can be proven generically for different variants of
Catt.

In particular, themain utilitywe extract in this thesis is the ability to define groupoidal versions
of the various semistrict theories we define in Chapter 4. By letting O consists of all possible
triples, the support condition is effectively removed, producing a version of Catt closer to
Grothendieck’s definition of∞-groupoid (see Section 1.1.2).

2.3.1 Operation sets
As previously mentioned, an operation set O consists of a collection of triples of a context ∆
and two subsets of the variables of ∆.

We call a subset of the variables of a context a variable set. In the formalisation, these variable
sets are given as a list of booleans, one boolean for each variable of the context. These are
given in Catt.Support, which also contains many constructions on them, including unions of
these sets, subset relations, and the free variables of each piece of syntax. The variable sets of∆
form a lattice with top element Var(∆) and bottom element ∅. The free variable constructions
commute with weakening, as is proved in Catt.Support.Properties by mutual induction.

53

https://alexarice.github.io/catt-agda/Catt.Support.html
https://alexarice.github.io/catt-agda/Catt.Support.Properties.html

We recall the function DC on these variable sets, given by DC in the formalisation, which
produces the downwards closure of a variable set. This admits the following properties:

Proposition 2.3.1. DC is an idempotent join-semilattice homomorphism. It preserves binary
joins (unions), subset inclusions, and preserves the top and bottom element of the lattice.

We further define the application of a substitution to a variable set below.

Definition 2.3.2. Given a variable set V of ∆ and (regular) substitution σ : ∆ → Γ, we
define the application of σ to V , written V JσK to be a variable set of Γ given by:

V J〈〉K = ∅
V J〈σ, t〉K = {(V \ {x})JσK ∪ FV(t) if x ∈ V

V JσK otherwise

Where x is assumed to be the last variable of ∆ in the second case.

We note that when representing variable sets as a list of booleans, these definitions are given
by simple inductions on the length of the context. These constructions admit the following
properties.

Proposition 2.3.3. Let ∆ be a context. Then the function taking a variable set V of ∆ to
V JσK is a join-semilattice homomorphism for any substitution σ : ∆→ Γ. Further, for a term
t : Term∆, a type A : Type∆, or a substitution τ : Θ→A ∆, the following equalities hold:

FV(tJσK) = FV(t)JσK
FV(AJσK) = FV(A)JσK
FV(τ • σ) = FV(τ)JσK

and hence Var(∆)JσK = FV(id∆)JσK = FV(id∆ • σ) = FV(σ). For any variable set V ⊆
Var(Θ) we have:

V JidΘK = V V Jτ • σK = V JτKJσK
for τ : Θ→ ∆ and σ : ∆→ Γ.

Proof. All proofs proceed by induction on the length of the context ∆ and are given in
Catt.Support.Properties.

An operation set is then a collection of triples of type:

Σ∆:CtxP(Var(∆))× P(Var(∆))

In the formalisation this is defined in Catt.Ops to be a function from a context and two variable
sets of that context to a universe.

Remark 2.3.4. The definition of an operation set in the formalisation deviates from the pre-
sentation given here, as the version in the formalisation is proof relevant. The proof relevant
definition allows us to give any type as the type of witnesses that a certain triple appears in

54

https://alexarice.github.io/catt-agda/Catt.Support.html#DC
https://alexarice.github.io/catt-agda/Catt.Support.Properties.html
https://alexarice.github.io/catt-agda/Catt.Ops.html

O, including a type containing many distinct witnesses.

If we wished to recover a definition closer to the classical set-based definition, we could
enforce that this function has a universe of propositions as its codomain, instead of a uni-
verse of types, and use propositional truncations to define various versions of O. This is
however unnecessary for any of the proofs appearing in this thesis, hence the choice of the
proof relevant definition for simplicity. A similar observation will apply to the definition of
equality rule sets introduced in Section 2.4.

We can now introduce our first operation set, the operation set for groupoidal operations,
which imposes no support conditions and allows all operations.

Definition 2.3.5. We define the groupoidal operation set Group as:

Group = {(∆, U, V) | ∆ : Ctx, U ⊆ Var(∆), V ⊆ Var(∆)}

We will refer to CattR with the operation set Group as groupoidal CattR or groupoidal
Catt (whenR = ∅).

To recover the standard definition of Catt, we must define the boundary sets of a pasting
diagram. In Section 1.2.3, these are given as the free variables of the boundary inclusion sub-
stitutions of pasting diagrams. Here we will instead give a direct definition of the variable sets
corresponding to the free variables of the substitutions, delaying the definition of boundary
inclusions of pasting diagrams until Section 3.2.

Definition 2.3.6. Let ∆ be a ps-context. Define the n-boundary variable sets ∂−n (∆) and
∂+n (∆) by induction on ∆:

∂ϵi ((x : ⋆)) = {x}

∂ϵi (Γ, (y : A), (f : x→A y)) =


∂ϵi (Γ) if i < dim(A)

∂−i (Γ) if i = dim(A) and ϵ = −
(∂+i (Γ) ∪ {y}) \ {x} if i = dim(A) and ϵ = +

∂ϵi (Γ) ∪ {y, f} otherwise

These boundary sets appear in the formalisation as pd-bd-vs.

Example 2.3.7. We consider the boundaries of the pasting context ∆ given by the following
diagram:

x y z
f

g

h

α

Letting Γ be the prefix of ∆ without h and α (such that ∆ = Γ, (h : y → z), (α : g → h)),

55

https://alexarice.github.io/catt-agda/Catt.Support.html#pd-bd-vs

⋆ : TypeΓ

x ∈ Var(Γ)
x : TermΓ

A : TypeΓ
〈A〉 : ∅ → Γ

∅ : Ctx
Γ : Ctx A : TypeΓ

Γ, (x : A) : Ctx

σ : ∆→A Γ t : TermΓ B : Type∆
〈σ, t〉 : ∆, (x : B)→A Γ

A : TypeΓ s : TermΓ t : TermΓ

s→A t : TypeΓ

∆ : Ctx A : Type∆ σ : ∆→⋆ Γ

Coh(∆ ;A)[σ] : TermΓ

(a) Syntax.

∅ `
Γ ` Γ ` A
Γ, (x : A) ` Γ ` ⋆

Γ ` s : A Γ ` A Γ ` t : A
Γ ` s→A t

Γ ` A
Γ ` 〈A〉 : ∅

Γ ` σ : ∆ Γ ` t : AJσK
Γ ` 〈σ, t〉 : ∆, (x : A)

(x : A) ∈ Γ

Γ ` x : A

Γ ` t : A Γ ` A = B

Γ ` t : B

∆ `ps ∆ ` s→A t
Γ ` σ : ∆ (∆, Supp(s), Supp(t)) ∈ O
Γ ` Coh(∆ ; s→At)[σ] : sJσK→AJσK tJσK

(b) Typing.

Γ ` s : A (Γ, s, t) ∈ R
Γ ` s = t

Rule
x ∈ Var(Γ)
Γ ` x = x

Γ ` s = t

Γ ` t = s

Γ ` s = t Γ ` t = u

Γ ` s = u

∆ ` A = B Γ ` σ = τ

Γ ` Coh(∆ ;A)[σ] = Coh(∆ ;B)[τ] Γ ` ⋆ = ⋆

Γ ` s = s′ Γ ` t = t′ Γ ` A = A′

Γ ` s→A t = s′ →A′ t′
Γ ` A = B

Γ ` 〈A〉 = 〈B〉

Γ ` σ = τ Γ ` s = t

Γ ` 〈σ, s〉 = 〈τ, t〉

(c) Equality.

(x : ⋆) `ps x : ⋆

Γ `ps x : A

Γ, (y : A), (f : x→A y)

Γ `ps x : s→A t

Γ `ps t : A
Γ `ps x : ⋆

Γ `ps

(d) Ps-contexts.

FV(⋆) = {} FV(〈A〉) = FV(A)

FV(x) = {x} for x ∈ Var

FV(Coh(∆ ;A)[σ]) = FV(σ)

FV(s→A t) = FV(s) ∪ FV(A) ∪ FV(t)

FV(〈σ, t〉) = FV(σ) ∪ FV(t)

(e) Free variables.

Figure 2.1: CattR: syntax, typing, and operations.
56

DC∅(∅) = ∅

DCΓ,x:A(V) =

{
DCΓ(V) if x 6∈ V
{x} ∪ DCΓ(V \ {x} ∪ FV(A)) if x ∈ V

Supp(t) = DCΓ(FV(t)) for t ∈ TermΓ

Supp(A) = DCΓ(FV(A)) for A ∈ TypeΓ
Supp(σ) = DCΓ(FV(σ)) for σ : ∆→A Γ

(f) Support.

xJσK = t if (x 7→ t) ∈ σ

Coh(Θ ;A)[τ]JσK = {Coh(Θ ;A)[τ • σ] if dim(Ty(σ)) = 0

Coh(Σ(Θ) ;Σ(A))[Σ(τ)]J↓σK otherwise
⋆JσK = Ty(σ)

(s→A t)JσK = sJσK→AJσK tJσK
〈A〉 • σ = 〈AJσK〉
〈τ, t〉 • σ = 〈τ • σ, tJσK〉

(g) Substitution application.

Σ(∅) = (N : ⋆), (S : ⋆)

Σ(Γ, (x : A)) = ΣΓ, (x : ΣA)

Σ(⋆) = N →⋆ S

Σ(s→A t) = Σs→ΣA Σt

Σ(x) = x

Σ(Coh(∆ ;A)[σ]) = Coh(Σ(∆) ;Σ(A))[Σ(σ)]

Σ(σ) = ↓(Σ′(σ))

Σ′(〈A〉) = 〈Σ(A)〉
Σ′(〈σ, x〉) = 〈Σ′(σ),Σ(t)〉
↓〈s→A t〉 = 〈A, s, t〉
↓〈σ, t〉 = 〈↓ σ, t〉

(h) Suspension.

wk(⋆) = ⋆

wk(s→A t) = wk(s)→wk(A) wk(t)
wk(x) = x

wk(Coh(∆ ;A)[σ]) = Coh(∆ ;A)[wk(σ)]
wk(〈A〉) = 〈wk(A)〉

wk(〈σ, t〉) = 〈wk(σ),wk(t)〉

(i) Weakening.

id∅ = 〈⋆〉
idΓ,(x:A) = 〈wk(idΓ), x〉

(j) Identity substitution.

Figure 2.1: CattR: syntax, typing, and operations.

57

we immediately see that:

∂ϵ1(Γ) = ∂ϵ1((x : ⋆), (y : ⋆), (f : x→ y)) ∪ {z, g}
= ∂ϵ1((x : ⋆)) ∪ {y, f, z, g}
= {x, y, f, z, g}

and therefore we have that:

∂−1 (∆) = ∂−1 (Γ) = Var(Γ)
∂+1 (∆) = (∂−1 (Γ) ∪ {h}) \ {g} = {x, y, f, z, h}

Similar calculations show that ∂ϵ2(∆) = Var(∆), ∂−0 (∆) = {x}, and ∂+0 (∆) = {z}.

The following lemma is immediate:

Lemma 2.3.8. If n ≥ dim(∆), then ∂ϵn(∆) = Var(∆).

Proof. A simple induction on the definition. A formalised proof appears as pd-bd-vs-full in
the module Catt.Support.Properties.

With this definition we can introduce the regular operation set, which recovers the regular
support conditions used in the definition of Catt.

Definition 2.3.9. The regular operation set Reg is defined to be:

Reg = {(∆,Var(∆),Var(∆)) | ∆ `ps} ∪ {(∆, ∂−dim(∆)−1(∆), ∂+dim(∆)−1(∆)) | ∆ `ps}

Thefirst component allows equivalences to bewell-formed, and the second gives the support
condition for composites.

The regular operation set has more standard presentation.

Proposition 2.3.10. Let the set Std of standard operations be defined as:

Std = {(∆, ∂−n (∆), ∂+n (∆)) | ∆ `ps, n ≥ dim(∆)− 1}

Then Std = Reg.

Proof. Suppose (∆, U, V) ∈ Reg. If U = ∂−dim(∆)−1(∆) and V = ∂+dim(∆)−1(∆), then
(∆, U, V) is trivially in Std by letting n = dim(∆) − 1. If instead U = V = Var(∆),
then (∆, U, V) ∈ Std by letting n = dim(∆) and applying Lemma 2.3.8.

Conversely, assume (∆, U, V) ∈ Std. Then there is n ≥ dim(∆) − 1 with U = ∂−n (∆)
and V = ∂+n (∆). If n = dim(∆) − 1 then (∆, U, V) is trivially in Reg, and otherwise by
Lemma 2.3.8 we haveU = V = Var(∆), and so (∆, U, V) is again an element of Reg. Hence,
Reg = Std.

This more uniform presentation is sometimes easier to work with, and will be used to prove

58

https://alexarice.github.io/catt-agda/Catt.Support.Properties.html#pd-bd-vs-full
https://alexarice.github.io/catt-agda/Catt.Support.Properties.html

properties of Reg in Section 2.3.2.

Remark 2.3.11. By lettingO = ∅, we recover the type theory GSeTT [BFM24], a type theory
for globular sets.

It would be possible to generalise the notion of operation set presented here by instead letting
the set O consist of triples (∆, s, t) where s and t are terms over ∆ instead of variable sets
over∆. This would allow more control over which operations were allowed in the theory. As
an example, we would be able to restrict the class of composites to contain only the standard
composites, or even further restrict it to binary composites.

This is however unnecessary to present the regular and groupoidal versions of CattR. By
only allowing the set of available operations to be specified up to the support of the contained
terms, it is possible to show that a coherence being an operation is closed under equality by
proving that equality preserves the support of a term.

2.3.2 Operation properties
Currently, our set of operations is completely unconstrained, and we will be limited in the
constructions that can be made in CattR. We therefore constrain these sets in two ways. The
first enforces that our set of operations is closed under suspension, for which we need to be
able to suspend variable sets. This is defined in the formalisation as susp-vs.

Definition 2.3.12. Let∆ be a context. The suspension of a variable set V over∆ is defined
to be:

Σ(V) = {N,S} ∪ V

where Σ(V), the suspension of V is a variable set over Σ(∆).

The suspension of a variable set commutes with taking the support of a piece of syntax, as
shown in the next lemma.

Lemma 2.3.13. The following equalities hold:

Supp(Σ(s)) = Σ(Supp(s)) Supp(Σ(A)) = Σ(Supp(A)) Supp(Σ(σ)) = Σ(Supp(σ))

for term s : TermΓ, type A : TypeΓ, and substitution σ : ∆→⋆ Γ.

Proof. All equalities hold by a mutual induction on terms, types, and substitutions, with a
secondary induction on the context Γ for the case of the variables and the base type ⋆. These
calculations are given in Catt.Suspension.Support.

We can then define our first property on operation sets.

Definition 2.3.14. An operation set O is suspendable if:

(∆, U, V) ∈ O =⇒ (Σ(∆),Σ(U),Σ(V)) ∈ O

For ∆ : Ctx and U, V ⊆ Var(∆).

59

https://alexarice.github.io/catt-agda/Catt.Suspension.Support.html#susp-vs
https://alexarice.github.io/catt-agda/Catt.Suspension.Support.html

The groupoidal operation set is trivially suspendable. To show that the regular operation set
is suspendable, we prove the following proposition.

Proposition 2.3.15. Let ∆ be a ps-context. Then:

Σ(∂ϵn(∆)) = ∂ϵn+1(Σ(∆))

for n ∈ N and ϵ ∈ {−,+}.

Proof. We proceed by induction on ∆. First suppose ∆ = (x : ⋆). We then have:

Σ(∂ϵn((x : ⋆))) = Σ({x}) = {N,S, x} = ∂ϵn+1(Σ((x : ⋆)))

Now suppose that ∆ = ∆′, (y : A), (f : x→A y). We split into cases on n, dim(A), and ϵ:

• If n < dim(A) then

Σ(∂ϵn(∆)) = Σ(∂ϵn(∆
′))

= ∂ϵn+1(Σ(∆
′)) by inductive hypothesis

= ∂ϵn+1(Σ(∆)) as n+ 1 < dim(Σ(A))

• If n = dim(A) and ϵ = − then the proof is similar to the preceding case.

• If n = dim(A) and ϵ = + then:

Σ(∂+n (∆)) = Σ((∂+n (∆
′) ∪ {y}) \ {x})

= (Σ(∂+n (∆
′)) ∪ {y}) \ {x}

= (∂+n+1(Σ(∆
′)) ∪ {y}) \ {x} by inductive hypothesis

= ∂+n+1(Σ(∆)) as n+ 1 = dim(Σ(A))

• If n > dim(A) then

Σ(∂ϵn(∆)) = Σ((∂ϵn(∆
′) ∪ {y, f})

= Σ(∂+n (∆
′)) ∪ {y, f}

= ∂+n+1(Σ(∆
′)) ∪ {y, f} by inductive hypothesis

= ∂+n+1(Σ(∆)) as n+ 1 > dim(Σ(A))

Hence, the desired equality holds in all cases.

Corollary 2.3.16. The regular operation set is suspendable.

Proof. By Proposition 2.3.10, it suffices to show that the standard operation set is suspend-
able, which is clear from the above proposition.

The second restriction we put on operation sets is that there are enough operations to create
the standard coherences presented in Section 1.2.4.

60

Definition 2.3.17. An operation set O contains the standard operations if Std ⊆ O.

The groupoidal operation set clearly contains the standard operations, and the regular oper-
ation set also does due to Proposition 2.3.10. The empty operation set does not contain the
standard operations. We end this section with the following proposition about the support of
terms in a disc.

Proposition 2.3.18. For n ∈ N the following two equations hold:

∂−n (D
n+1) = Var(Sn) ∪ {d−n } = Var(Dn) ∂+n (D

n+1) = Var(Sn) ∪ {d+n+1}

Further, the following equations hold:

FV(Un) = Var(Sn) Supp(d−n) = Var(Dn) = ∂−n (D
n+1) Supp(d+n) = ∂+n (D

n+1)

again for any n ∈ N.

Proof. The first equations follow by a simple case analysis, using that ∂−n (Dn) = Var(Dn)
by Lemmas 2.2.4(i) and 2.3.8. The free variables of Un are easily calculated inductively, and
the support of d−n and d+n are easy to compute using the first parts of the proposition, and
that FV (Un) ⊆ Supp(d−n) and FV(Un) ⊆ Supp(d+n) as the support of a term is downwards
closed.

These proofs are formalised in Catt.Discs.Support.

Corollary 2.3.19. Both (Dn+1, d−n , d
+
n) and (D

n, dn, dn) are in Std for each n.

2.4 The set of equality rules R
In CattR, the definitional equality relation is generated by a set of rules R formed of triples
containing a context and two terms in the context which should be made equal. In this section
we discuss some operations on these equality sets and properties that they may have.

Remark 2.4.1. In the formalisation the set of equality rules is defined similarly to the set of
operationsO. It is defined as a function that takes a context and two terms over that context
and returns a type. It is therefore proof relevant in the same way as the operation sets.

The equality rule sets inherit some operations and relations just by being sets. We can easily
form the empty equality set, which allows us to recover the weak type theory Catt, and given
two equality sets we can take their union, to get a type theory with equalities from both sets
(we note that the equality generated by a union is in general coarser than the union of the
equalities generated by the individual sets).

To aid readability when reasoning about typing and equality with multiple distinct operations,
we may subscript the turnstile symbol in various judgements with the set of equality rules
being used. For example, we may write the judgements for typing of a term t in the type
theory generated from rulesR as

Γ `R t : A

61

https://alexarice.github.io/catt-agda/Catt.Discs.Support.html

and the corresponding judgement for the equality of two terms s and t as

Γ `R s = t

Equality rule sets can also be subsets of each other, leading to the following lemma.

Lemma 2.4.2. LetR and S be two equality rule sets and suppose that

Γ `S s = t

for all (Γ, s, t) ∈ R with Γ `S s : A for some A : TypeΓ. Then the following inference rules
hold:

Γ `R
Γ `S

Γ `R t : A

Γ `S t : A
Γ `R A

Γ `S A
Γ `R σ : ∆

Γ `S σ : ∆

Γ `R s = t

Γ `S s = t

Γ `R A = B

Γ `S A = B

Γ `R σ = τ

Γ `S σ = τ

In particular these inference rules hold whenR ⊆ S .

Proof. Follows from a simple induction. Details are given in the formalisation in module
Catt.Typing.Rule.Properties.

Corollary 2.4.3. Any context, term, type, or substitution that is well-formed in Catt is also
well-formed in CattR, for any equality setR.

Furthermore, we can immediately show that the application of a substitution to a piece of
syntax that is well-formed in Catt is well-formed.

Lemma 2.4.4. Let R be any equality rule set. Then the following inference rules hold for
σ : ∆→⋆ Γ:

∆ `∅ A Γ `R σ : ∆

Γ `R AJσK ∆ `∅ s : A Γ `R σ : ∆

Γ `R sJσK : AJσK ∆ `∅ τ : Θ Γ `R σ : ∆

Γ `R τ • σ : Θ

where the judgements with a subscript empty set are judgements in the theory generated by the
empty rule sets (judgements in Catt).

Proof. Follows immediately from a mutual induction, using that any equality in Catt is
syntactic. The proof is formalised in Catt.Typing.Properties.Base.

An arbitrary setR has very few restrictions on the equality relation it generates, and the terms
that are well-formed because of it. A rule set R could identify terms of different types, or
identify two different variables (or even identify all variables or terms). This makes it difficult
to prove much about the theory generated by an arbitrary setR.

To this end, we introduce certain conditions that these equality rule sets can satisfy. The first
three of these conditions put certain closure properties on the set of rules R, and each allow

62

https://alexarice.github.io/catt-agda/Catt.Typing.Rule.Properties.html
https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Base.html

various constructions to be well-formed. We call theories that satisfy these three properties
tame theories and introduce these in Section 2.4.1. In Section 2.4.2, we introduce two more
conditions which take the form of a property that the generated equality must satisfy.

By introducing these conditions, we can prove various metatheoretic properties about CattR
in a modular and generic way. This will allow the re-use of many constructions and proofs
about the properties of these constructions in Chapter 4, where two distinct type theories for
semistrict∞-categories are given.

In the following subsections, we will also show that the rule set for disc removal satisfies all
these conditions. For all these conditions, we will have that if the condition holds on R and
on S then it also holds onR∪S , and so these conditions can be proved individually for each
rule set that is introduced. Further, the empty set will satisfy all of these conditions vacuously,
and so all proofs and constructions in the section apply to Catt.

2.4.1 Tame theories
Here we introduce the three core conditions on the equality rule setR which we expect hold
for any reasonable choice of rule set:

• The weakening condition, which allows weakening to be well-formed.

• The suspension condition, which allows suspension to be well-formed.

• The substitution condition, which implies that the application of substitution to terms,
types, and other substitutions (as substitution composition) preserves typing and equal-
ity.

We call an equality rule set tame if it satisfies all three of these conditions, and call the corre-
sponding theory CattR a tame theory.

Weakening condition For the weakening operation to be well-formed, meaning that the
weakening of a well-formed piece of syntax is itself well-formed, the following closure prop-
erty must hold on the set of rulesR.

Definition 2.4.5. A set of rules R satisfies the weakening condition if for all (Γ, s, t) ∈ R
we have:

((Γ, (x : A)),wk(s),wk(t)) ∈ R

for all A : TypeΓ.

The following proposition is immediately provable bymutual induction on typing and equality.
Its proof is given in Catt.Typing.Properties.Weakening.

Proposition 2.4.6. LetR satisfy the weakening condition. Then the following inference rules
are admissible in CattR.

Γ ` B
Γ, (x : A) ` wk(B)

Γ ` s : B
Γ, (x : A) ` wk(s) : wk(B)

Γ ` σ : ∆

Γ, (x : A) ` wk(σ) : ∆

for types A,B : TypeΓ, term s : TermΓ and substitution σ : ∆→C Γ.

63

https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Weakening.html

Corollary 2.4.7. IfR satisfies the weakening condition then:

Γ ` idΓ : Γ

for any Γ : Ctx.

Using only the above proposition we can immediately prove typing properties for several
constructions using discs.

Lemma 2.4.8. Suppose the weakening condition holds. Then the following judgements hold:

Sn ` Un Sn ` Dn `

For all n ∈ N. Further, the following inference rules are admissible:

Γ ` A n = dim(A)

Γ ` {A} : Sn
Γ ` A n = dim(A) Γ ` s : A

Γ ` {A, s} : Dn

Γ ` {A} : Sn

Γ ` A
Γ ` {A, s} : Dn

Γ ` A
Γ ` {A, s} : Dn

Γ ` s : A

For A : TypeΓ and s : TermΓ.

Proof. The first three typing judgements follow from a simple mutual induction, making use
of the typing of weakening. We prove that Γ ` {A} : Sn by induction on n andA. The base
case is trivial. For the inductive step we assume that Γ ` s→A t, with n = dim(A), and
want to show that:

Γ ` 〈{A}, s, t〉 : Sn, (d−n+1 : U
n), (d+n+1 : wk(Un))

The judgement Γ ` {A} : Sn holds by inductive hypothesis, and so it remains to show that
the following two judgements hold:

Γ ` s : UnJ{A}K Γ ` t : wk(Un)J〈{A}, s〉K
As Γ ` s→A t, we know (by case analysis on the typing derivation) that Γ ` s : A and
Γ ` t : A. These judgements are sufficient to finish the proof, since A ≡ UnJ{A}K ≡
wk(Un)J〈{A}, s〉K by Lemma 2.2.4(vi) and the interaction of weakening with substitution
application.

To show that Γ ` A follows from Γ ` {A} : Sn, we instead show that Γ ` UnJ{A}K,
leveraging that typing is invariant under syntactic equality. The typing of UnJ{A}K follows
from Un being well-formed in Catt (as it is well-formed in any theory with the weakening
property), and Lemma 2.4.4. The second to last inference rule follows trivially from the
preceding one. For the last rule, we get thatΓ ` s : UnJ{A}K by case analysis onΓ ` {A, s} :
Dn, and so we are finished by the invariance of typing rules under syntactic equality.

If we further have that the set of operations includes the standard operations then we get the
following corollary.

64

Corollary 2.4.9. Suppose thatO contains the standard operations in addition toR satisfying
the weakening condition. Then the following are equivalent:

• Γ ` A and Γ ` t : A,

• There exists some B : TypeΓ such that Γ ` id(A, t) : B,

• Γ ` id(A, t) : t→A t.

If we further have that dim(A) 6= 0 then the following two conditions are also equivalent:

• There exists some B : TypeΓ such that Γ ` Coh(Dn ;wk(Un))[{A, t}] : B,

• Γ ` Coh(Dn ;wk(Un))[{A, t}] : A.

where n = dim(A).

Proof. The proof follows from Lemmas 2.4.8 and 2.2.4(vi) and Corollary 2.3.19.

We end this discussion with the following proposition.

Proposition 2.4.10. The set dr satisfies the weakening condition.

Proof. It suffices to show that for all Γ : Ctx, A,B : TypeΓ, and t : TermΓ that:

((Γ, (x : B)),Coh(Dn ;wk(Un))[wk({A, t})],wk(t)) ∈ dr

when n = dim(A). By Lemma 2.2.4(iii), wk({A, t}) ≡ {wk(A),wk(t)} and so the triple
above is clearly contained in dr.

The semistrict type theories Cattsu and Cattsua (which will be introduced in Sections 4.2
and 4.3) will be generated by equality rule sets that are the union of multiple smaller rule sets
(including disc removal). Since the weakening condition is clearly preserved under unions, we
will be able to show that the rule sets generating Cattsu and Cattsua satisfy the weakening
condition by showing that it is satisfied by each individual component.

Suspension condition For suspension, we introduce the following condition, which is sim-
ilar to the corresponding condition for weakening.

Definition 2.4.11. A set of equality rulesR satisfies the suspension condition if

(Σ(Γ),Σ(s),Σ(t)) ∈ R

for all (Γ, s, t) ∈ R.

If the set of operations O is suspendable, then this condition is sufficient to show that the
suspension of a well-formed piece of syntax is well-formed.

Proposition 2.4.12. SupposeO is suspendable andR satisfies the suspension condition. Then
the following inference rules are admissible for Γ,∆,∆′ : Ctx, A,B,C,D : TypeΓ, s, t :

65

TermΓ, σ : ∆→C Γ, and τ : ∆′ →D Γ.

Γ `
Σ(Γ) `

Γ ` A
Σ(Γ) ` Σ(A)

Γ ` s : A
Σ(Γ) ` Σ(s) : Σ(A)

Γ ` σ : ∆

Σ(Γ) ` Σ′(σ) : ∆

Γ ` A = B

Σ(Γ) ` Σ(A) = Σ(B)

Γ ` s = t

Σ(Γ) ` Σ(s) = Σ(t)

Γ ` σ = τ

Σ′(Γ) ` Σ′(σ) = Σ(τ)

For all µ : ∆→s→At Γ and µ′ : ∆′ →s′→A′ t′ Γ
′ the following two rules are admissible:

Γ ` µ : ∆

Γ ` ↓µ : Σ(∆)

Γ ` µ = µ′

Γ ` ↓µ = ↓µ′

and so the inference rules

Γ ` σ : ∆

Σ(Γ) ` Σ(σ) : Σ(∆)

Γ ` σ = τ

Σ(Γ) ` Σ(σ) = Σ(τ)

hold for σ : ∆→⋆ Γ and τ : ∆′ →⋆ Γ.

Proof. The rules concerning the unrestriction operation follow by simple induction on the
typing judgement or equality in the premise, and in fact do not need the suspension condi-
tion.

The remainder of the rules follow from a routine mutual induction on all typing and equality
rules, which can be found in Catt.Suspension.Typing. The suspendability of the operation
set is used for the case involving the typing rule for coherences, which also makes use of
Lemma 2.3.13. In this case, the functoriality of suspension is used to show that the coherence
has the correct type. The suspension condition is used for the rule constructor of the equality
of terms.

Similarly to the weakening condition, the suspension condition is closed under unions of rule
sets, andwe can show it is satisfied by dr, with a similar proof to the proof for weakening.

Proposition 2.4.13. The set dr satisfies the suspension condition.

Proof. It is sufficient to prove that for all Γ : Ctx, A : TypeΓ, and t : TermΓ that:

(Σ(Γ),Coh(Σ(Dn) ; Σ(wk(Un)))[Σ({A, t})],Σ(t)) ∈ dr

when n = dim(A). By Lemma 2.2.4(ii), we get that Σ(Dn) ≡ Dn+1 and Σ(wk(Un)) ≡
wk(Σ(Un) ≡ wk(Un+1). By Lemma 2.2.4(iv), Σ({A, t}) ≡ {Σ(A),Σ(t)}. Therefore, it is
sufficient to show that:

(Σ(Γ),Coh(Dn+1 ;wk(Un+1))[{Σ(A),Σ(t)}],Σ(t)) ∈ dr

which is clear as dim(Σ(A)) = dim(A) + 1 = n+ 1.

66

https://alexarice.github.io/catt-agda/Catt.Suspension.Typing.html

Substitution condition The substitution condition takes a slightly different form to the pre-
vious two conditions. Instead of requiring that the rule set is closed under application of any
arbitrary substitution σ, we instead only ensure it is closed under well-formed substitutions.
This will not prevent us proving that typing is closed under the application of substitutions,
but will be critical in proving that the supported rules construction, which will be given in
Definition 2.4.27 and is used for proving the support condition, satisfies the substitution con-
dition.

Definition 2.4.14. An equality rule setR satisfies theR′-substitution condition if:

(Γ, sJσK, tJσK) ∈ R
whenever (∆, s, t) ∈ R and σ : ∆→⋆ Γ with Γ `R′ σ : ∆. We say the set R satisfies the
substitution condition if it satisfies theR-substitution condition.

We make two comments about this definition:

• We only close under substitutions with type part ⋆. It will still be possible that typing is
preserved by arbitrary (well-formed) substitutions when combined with the suspension
condition.

• We introduce a second rule set R′ in the definition, which is only used for the typing
premise of the substitution σ. The reason for this is that the substitution condition is
not closed under unions, and so we will instead prove that certain rule sets satisfy the
R′-substitution condition for an arbitraryR′, a condition which is closed under unions.

The substitution condition allows us to give the next proposition.

Proposition 2.4.15. SupposeR satisfies the substitution condition. For any σ : ∆→⋆ Γ, the
following rules are admissible:

∆ ` A Γ ` σ : ∆

Γ ` AJσK ∆ ` s : A Γ ` σ : ∆

Γ ` sJσK : AJσK ∆ ` τ : Θ Γ ` σ : ∆

Γ ` τ • σ : Θ

∆ ` A = B Γ ` σ : ∆

Γ ` AJσK = BJσK ∆ ` s = t Γ ` σ : ∆

Γ ` sJσK = tJσK ∆ ` τ = µ Γ ` σ : ∆

Γ ` τ • σ = µ • σ

IfR additionally satisfies the suspension conditions, then all the above rules are admissible for
any substitution σ : ∆→B Γ.

Proof. The proof for a non-extended substitution is given by another routine mutual induc-
tion in Catt.Typing.Properties.Substitution. For an arbitrary substitution σ : ∆→B Γ, we
also proceed bymutual induction, but for the application of the substitution to an equality of
terms s and twe further split onB. IfB = ⋆, then the proof for non-extended substitutions
can be used. Otherwise, we have:

sJσK ≡ ΣsJ↓σK
= ΣtJ↓σK
≡ tJσK
67

https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Substitution.html

with the non-syntactic equality following from the preservation of equality by suspension
and inductive hypothesis. The proofs that the extended versions of these rules are admissible
are found in Catt.Typing.Properties.Substitution.Suspended.

We also prove that application of substitution respects equality in its second argument, which
does not in fact need the substitution condition. This is also proved by a simple mutual induc-
tion in Catt.Typing.Properties.Substitution.

Proposition 2.4.16. The following inference rules are admissible:

Γ ` σ = τ

Γ ` sJσK = sJτK Γ ` σ = τ

Γ ` AJσK = AJτK Γ ` σ = τ

Γ ` µ • σ = µ • τ

for substitutions σ : ∆→A Γ, τ : ∆→B Γ, and µ : Θ→C ∆, term s : Term∆, and type
A : Type∆.

This allows us to define a category of well-formed syntax in CattR, which is well-defined by
the two preceding definitions.

Definition 2.4.17. Suppose R satisfies the substitution and weakening conditions. Then
we can define the syntactic category of CattR, which by an abuse of notation we call CattR,
to have:

• Objects given by contexts Γ where Γ `.

• Morphisms ∆ → Γ given by substitutions σ : ∆→⋆ Γ where Γ ` σ : ∆ quotiented
by the relation which equates substitutions σ and τ when Γ ` σ = τ .

• The identity morphism Γ→ Γ given by idΓ.

• Composition is given by τ ◦ σ = σ • τ .

By Corollary 2.4.7, the identity substitution is a well-defined morphism, and the above two
propositions prove that composition is well-defined. Composition satisfies associativity and
unitality by Proposition 2.2.1. We remind the reader that the direction of morphisms in this
category is opposite to the direction of morphisms inmost categorical models of type theory,
as explained in Remark 1.2.1.

By taking the weakening of the identity substitution idΓ : Γ→ Γ, we get a substitution:

projΓ = wk(idΓ) : Γ→ Γ, (x : A)

which includes Γ into Γ, x : A. It can be checked (and is given by apply-project-is-wk-tm in
the formalisation) that applying this substitution to a term is the same operation as weakening
the term. Using this, the following can be proved:

Lemma 2.4.18. SupposeR satisfies the substitution condition. Then it also satisfies the weak-
ening condition.

68

https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Substitution.Suspended.html
https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Substitution.html
https://alexarice.github.io/catt-agda/Catt.Syntax.Properties.html#apply-project-is-wk-tm

Proof. For (Γ, s, t) ∈ R and A : TypeΓ, we must prove that:

((Γ, (x : A)),wk(s),wk(t)) ≡ ((Γ, (x : A)), sJprojΓK, tJprojΓK) ∈ R
which will follow from the substitution condition if it can be proved that

Γ, x : A `R projΓ : Γ

holds. This judgement is easy to derive when R satisfies the weakening condition, but this
is what we are trying to prove. Instead, since ∅ trivially satisfies the weakening condition,
projΓ is well-formed in Catt, and so the derivation above follows from Corollary 2.4.3.

We lastly show that dr also satisfies the substitution condition.

Proposition 2.4.19. The set dr satisfies theR-substitution condition for any equality setR.

Proof. The proof is similar to Propositions 2.4.10 and 2.4.13, and follows from the equality
{A, t} • σ ≡ {AJσK, tJσK} which holds by Lemma 2.2.4(v) .

Remark 2.4.20. The proof of the substitution condition for dr makes no use of the typing of
σ. In fact this premise is only necessary for the supported rules construction which will be
given in Definition 2.4.27

Tameness We can now define tameness.

Definition 2.4.21. An equality rule setR is tame if it satisfies the weakening, substitution,
and suspension conditions. An operation setO is tame if it is suspendable and contains the
standard operations. A theory generated byR and O is tame if bothR and O are.

Proposition 2.4.22. The set dr is tame.

In the formalisation, each module is parameterised by the various conditions that the module
needs, and where possible we avoid using extra unnecessary conditions. Given that every the-
ory we will consider in this thesis is tame, and that it is hard to imagine a sensible theory that
isn’t tame, the argument could be made that the effort put into making distinctions between
these conditions is wasted or at least unnecessary.

The case for including the weakening condition is especially unconvincing as it is implied
by the substitution condition which likely holds in any theory of significant interest. It is
however included here as it is used in the formalisation, where its introduction is an artefact
of the natural progression of this research.

To this end, from Chapter 3, we will assume that the theory we are working over is tame, and
build a library of constructions and results that work in any tame theory, even when some
results may not need all the conditions above.

Since we have limited use for proving properties about theories that do not satisfy the sub-
stitution condition, we could have instead enforced that all theories respect substitution by

69

adding a constructor to the (term) equality relation that takes an equality ∆ ` s = t and
typing relation Γ ` σ : ∆ to an equality Γ ` sJσK = tJσK. This may remove some overhead
of setting up the weakening and substitution conditions. It would also allow more minimal
equality rule sets to be given, as a rule set such as disc removal could be given by

{(Dn,Coh(Dn ;wk(Un))[idDn], dn) | n ∈ N}

On the other hand, including the extra constructor would effectively add an extra case to each
inductive proof, and it is less clear how to minimise some of the equality rules that will be
introduced in Chapter 3. Taking either approach would likely lead to a similar development
of the theory.

2.4.2 Further conditions
Knowing that the theory we are working in is tame will be sufficient for giving most of the
constructions and proofs in Chapter 3. Here we introduce some extra conditions that instead
serve to aid in the proof of metatheoretic properties of the generated theory. These conditions
take the form of predicates on each rule in the equality rule sets, rather than being closure
properties as the conditions for tameness were.

Support condition The support of a term plays a central role in classifying the operations of
the theory (see Section 2.3). Although it is known that support is respected by syntactic equal-
ity, we have not yet shown it is preserved by definitional equality. The following condition
allows this to be proved.

Definition 2.4.23. A setR satisfies theR′-support condition for an equality setR′ when:

Γ `R′ s : A =⇒ Supp(s) = Supp(t)

for each (Γ, s, t) ∈ R and A : TypeΓ. A setR satisfies the support condition if it satisfies the
R-support condition.

The use of support instead of free variables in this definition is critical, as we do not expect
the free variables of a piece of syntax to be preserved by equality in general. As an example,
we would like to have the equality:

D1 ` Coh(D1 ;U1)[idD1] = d1

given by disc removal, yet the free variables of each side are not equal (though the support of
each side is).

We also draw attention to the typing premise. Without this, the left-hand side of each equality
rule is too unconstrained (at least with how the equality rules are currently presented), and
this condition would fail to hold on the equality sets we introduce in this thesis. Having this
typing premise come from a separate rule setR′ allows the support condition to be preserved
by unions of equality sets, similar to the substitution condition.

From the support condition, we immediately get the following proposition, proved by mutual
induction.

70

Proposition 2.4.24. Let R satisfy the support condition. Then the following rules are admis-
sible:

Γ ` s = t

Supp(s) = Supp(t)
Γ ` A = B

Supp(A) = Supp(B)

Γ ` σ = τ

Supp(σ) = Supp(τ)

For s, t : TermΓ, A,B : TypeΓ and substitutions σ : ∆→A Γ and τ : Θ→B Γ.

In traditional presentations of Catt, FV(t) ∪ FV(A) is used instead of Supp(t) for a term t of
type A. Equipped with the support condition we can now show that these are the same.

Lemma 2.4.25. The following hold whenR satisfies the support condition:

(i) Supp(A) = FV(A) when Γ ` A,

(ii) Supp(σ) = FV(σ) when Γ ` σ : ∆,

(iii) Supp(t) = Supp(A) ∪ FV(t) when Γ ` t : A,

(iv) Supp(t) = FV(A) ∪ FV(t) = Supp(A) ∪ Supp(t) when Γ ` t : A and Γ ` A.

Proof. All properties are proven by a single mutual induction on the typing derivations in
the premises.

(i) Suppose Γ ` A. If A ≡ ⋆ then Supp(A) = FV(A) = ∅. Instead, suppose A ≡ s→B t.
Then we have that Γ ` B, Γ ` s : B, and Γ ` t : B and so:

Supp(A) = Supp(B) ∪ Supp(s) ∪ Supp(t)
= FV(B) ∪ (FV(B) ∪ FV(s)) ∪ (FV(B) ∪ FV(t)) (∗)
= FV(B) ∪ FV(s) ∪ FV(t)
= FV(A)

where the equality (∗) is derived from the inductive hypothesis for (i) applied to B
and the inductive hypothesis for (iv) applied to s and t.

(ii) Suppose Γ ` σ : ∆. If σ ≡ 〈A〉 then Γ ` A and so:

Supp(σ) = Supp(A) = FV(A) = FV(σ)

If instead σ ≡ 〈τ, t〉 and ∆ = Θ, (x : A) then Γ ` τ : Θ and Γ ` t : AJτK and so:

Supp(σ) = Supp(τ) ∪ Supp(t)
= Supp(τ) ∪ (Supp(AJτK) ∪ FV(t)) (∗)
= DCΓ(FV(τ) ∪ FV(AJτK)) ∪ FV(t)
= Supp(τ) ∪ FV(t) as FV(AJτK) ⊆ FV(τ)
= FV(τ) ∪ FV(t) (†)
= FV(σ)

where the equality (∗) is derived from the inductive hypothesis for (iii) applied to t
and the equality (†) is derived from the inductive hypothesis for (ii) applied to τ .

71

(iii) Suppose Γ ` t : A. We then split on the constructor used for the typing derivation:

If the derivation is the result of a conversion rule applied to Γ ` t : B and Γ ` A = B,
then inductive hypothesis gives Supp(t) = Supp(B) ∪ FV(t) and Proposition 2.4.24
gives Supp(A) = Supp(B) and so Supp(t) = Supp(A) ∪ FV(t) as required.

If the derivation is derived from the typing rule for variables, then a simple induction
on the context Γ, using that Supp(wk(A)) = Supp(A), gives the required result.

If the derivation is given by the typing rule for coherences then t ≡ Coh(∆ ;B)[σ],
Γ ` σ : ∆, and A ≡ BJσK. Therefore,

Supp(t) = Supp(σ)
= DCΓ(FV(BJσK) ∪ FV(σ)) as FV(BJσK) ⊆ FV(σ)
= Supp(A) ∪ Supp(σ)
= Supp(A) ∪ FV(σ) (∗)
= Supp(A) ∪ FV(t)

where the equality (∗) is the result of applying the inductive hypothesis for (ii) to σ.

(iv) If Γ ` t : A and Γ ` A then:

Supp(t) = Supp(A) ∪ FV(t) = FV(A) ∪ FV(t)

trivially follows from (i) and (iii) and:

Supp(t) = DCΓ(Supp(t)) = DCΓ(FV(A) ∪ FV(t)) = Supp(A) ∪ Supp(t)

with the first equality resulting from the idempotency of the downwards closure op-
erator.

This proof is formalised in Catt.Typing.Properties.Support.

Corollary 2.4.26. Let R satisfy the support condition and suppose Γ ` σ : ∆. Then the
following equality holds:

DCΓ(V JσK) = DC∆(V)JσK
for all V ⊆ Var(∆); downwards closure commutes with the application of σ to variable sets.

Proof. Proceed by induction on ∆. If ∆ ≡ ∅ then the equation is trivial. Therefore, assume
∆ ≡ Θ, (x : A) and so σ ≡ 〈τ, t〉 with Γ ` τ : Θ and Γ ` t : AJτK by case analysis. We now
split on whether x ∈ V .

If x 6∈ V then DCΓ(V JσK) = DCΓ(V JτK) = DCΘ(V)JτK = DC∆(V)JτK with the second
equality due to inductive hypothesis. Otherwise, x ∈ V and so letting U = V \ {x} we get

72

https://alexarice.github.io/catt-agda/Catt.Typing.Properties.Support.html

the equality:

DCΓ(V JσK) = DCΓ(UJτK ∪ FV(t))
= DCΓ(UJτK) ∪ Supp(t)
= DCΓ(UJτK) ∪ Supp(AJτK) ∪ FV(t) (†)
= DCΓ(UJτK) ∪ DCΓ(FV(A)JτK) ∪ FV(t)
= DCΓ(UJτK ∪ FV(A)JτK) ∪ FV(t)
= DCΓ((U ∪ FV(A))JτK) ∪ FV(t)
= DCΘ(U ∪ FV(A))JτK ∪ FV(t) (∗)
= ({x} ∪ DCΘ(U ∪ FV(A)))JσK
= DC∆(V)JσK

where equality (∗) is by inductive hypothesis and equality (†) is by Lemma 2.4.25(iii).

Unfortunately, proving that the support condition holds for most equality rule sets is not as
trivial as the proofs for the tameness properties. Consider the case for disc removal, which
gives rise to the equality

Γ ` Coh(Dn ;wk(Un))[{A, t}] = t

To prove the support condition for this case we need to show that:

Supp({A, t}) = Supp(t)

where we can assume that Γ ` t : A. Intuitively this should hold, as the support of a substi-
tution should be equal to the support of the locally maximal arguments, and if the derivation
Γ ` t : A held in Catt, we would be able to prove this. However, this proof (and intuition)
relies on the derivation Γ `R t : A holding in a theory generated by R where R already
satisfies the support condition, without which the typing derivation offers little utility.

We therefore introduce a proof strategy for showing that the support condition holds. The
key insight of this strategy is to prove by induction that every equality and every typing
derivation in the system is well-behaved with respect to support. Then, for the case of an
equality Γ ` s = t arising from a rule (Γ, s, t), we have Γ ` s : A as a premise and so by
inductive hypothesis can assume that this typing derivation is well-behaved with respect to
support.

We formalise this with the following definition, called the supported rules construction:

Definition 2.4.27. LetR be some equality rule set. The supported rules construction applied
toR produces the equality rule setRS, given by:

RS = {(Γ, s, t) ∈ R | Supp(s) = Supp(t)}

The rule setRS satisfies the support condition by construction.

The proof strategy then proceeds as follows: to prove that R satisfies the support condition,
we instead prove that R satisfies the RS-support condition, leveraging that RS itself satisfies
the support condition. The proof is then completed by the following lemma:

73

Lemma 2.4.28. LetR be an equality rule set that satisfies theRS-support condition. Then the
following inference rules are admissible:

Γ `R A

Γ `RS A

Γ `R s : A

Γ `RS s : A

Γ `R σ : ∆

Γ `RS σ : ∆

Γ `R A = B

Γ `RS A = B

Γ `R s = t

Γ `RS s = t

Γ `R σ = τ

Γ `RS σ = τ

and henceR satisfies the support condition.

Proof. The inference rules are all proven using a mutual induction on all typing and equality
rules, using thatR satisfies theRS-support condition in the case where the equality Γ ` s =
t is derived from a rule (Γ, s, t) ∈ R. This induction is formalised in Catt.Support.Typing.

The set R then satisfies the support condition as if (Γ, s, t) ∈ R and Γ `R s : A, then
Γ `RS s : A holds by the first part of the lemma and so Supp(s) = Supp(t) as R is already
known to satisfy theRS-support condition.

Remark 2.4.29. The original motivation for parameterising Catt by an arbitrary set of equal-
ity rulesR was not to share proofs between Cattsu and Cattsua but was to be able to state
the supported rules construction.

To be able to prove thatR satisfies theRS-support condition, we will commonly need to know
thatRS satisfies various tameness conditions, which are given by the next lemma.

Lemma 2.4.30. Let R be any equality set. Then RS satisfies the weakening, suspension, and
substitution conditions ifR respects the corresponding condition.

Proof. Let (Γ, s, t) ∈ R be an arbitrary rule. To showRS satisfies the weakening condition
we need to show that:

(Γ, s, t) ∈ RS =⇒ ((Γ, (x : A)),wk(s),wk(t)) ∈ RS

By assumption, (Γ,wk(s),wk(t)) ∈ R and by the premise of the implication we have
Supp(s) = Supp(t). From this it follows that Supp(wk(s)) = Supp(wk(t)) and so the
conclusion of the implication holds.

The case for suspension is similar except we need to use the equality:
Supp(Σ(s)) = Σ(Supp(s)) = Σ(Supp(t)) = Supp(Σ(t))

derived from Lemma 2.3.13 and Supp(s) = Supp(t) from the premise of the implication.

For the substitution condition we need to show that:
Supp(s) = Supp(t) =⇒ Supp(sJσK) = Supp(tJσK)

under the assumption that ∆ `RS σ : Γ. Since RS satisfies the support rule, we can use
Corollary 2.4.26 to get:
Supp(sJσK) = DCΓ(FV(s)JσK) = Supp(s)JσK = Supp(t)JσK = DCΓ(FV(t)JσK) = Supp(tJσK)

74

https://alexarice.github.io/catt-agda/Catt.Support.Typing.html

as required.

We now prove the appropriate support condition for disc removal.

Proposition 2.4.31. Let R satisfy the support and weakening conditions. Then the set dr
satisfies theR-support condition.

Proof. It is sufficient to prove that given s : TermΓ, A : TypeΓ, and n = dim(A) that:

Γ `R Coh(Dn ;wk(Un))[{A, t}] : B =⇒ Supp({A, t}) = Supp(t)

Assume the premise of the implication. Then Γ `R {A, t} : Dn by case analysis on the typ-
ing derivation and so Γ `R A and Γ `R t : A by Lemma 2.4.8 asR satisfies the weakening
condition.

By a simple induction, it can be shown that Supp({A, t}) = Supp(A) ∪ Supp(t). By
Lemma 2.4.25(iv) we have Supp(t) = Supp(A) ∪ Supp(t) as R satisfies the support con-
dition and so Supp({A, t}) = Supp(t) as required.

Preservation condition Our last condition allows us to prove preservation, the property
that typing is preserved by equality.

Definition 2.4.32. A set R satisfies the R′-preservation condition for an equality set R′

when:
Γ `R′ s : A =⇒ Γ `R′ t : A

for each (Γ, s, t) ∈ R and A : TypeΓ. The set R satisfies the preservation condition if it
satisfies theR-preservation condition.

When a rule setR has all the properties presented in this section, we are able to show preser-
vation for the generated theory.

Proposition 2.4.33. Let R satisfy the support condition and preservation condition, as well
as being tame. Then the following inference rules are admissible:

Γ ` A Γ ` A = B

Γ ` B
Γ ` s : A Γ ` s = t Γ ` A = B

Γ ` t : B

Γ ` σ : ∆ Γ ` σ = τ

Γ ` τ : ∆

for A,B : TypeΓ, s, t : TermΓ, σ : ∆→A Γ, and τ : ∆→B Γ.

Proof. We prove the following bidirectional versions of the inference rules by mutual induc-

75

tion on the equality derivation:

Γ ` A = B =⇒ (Γ ` A ⇐⇒ Γ ` B)

Γ ` s = t =⇒ (∀A. Γ ` s : A ⇐⇒ Γ ` t : A)
Γ ` σ = τ =⇒ (Γ ` σ : ∆ ⇐⇒ Γ ` τ : ∆)

which imply the inference rules of the proposition are admissible (using the conversion rule
for the second rule).

The only non-trivial cases are for the statement for terms. We split on the equality derivation
Γ ` s = t. The cases for reflexivity on variables and transitivity are also trivial. The case
for symmetry follows from the symmetry of the “if and only if” relation.

Now suppose the equality is of the form Coh(∆ ;A)[σ] = Coh(∆ ;B)[τ] and is derived from
the equality rule for coherences from equalities ∆ ` A = B and Γ ` σ = τ . We prove the
first direction, with the second following symmetrically. We therefore assume we have a
typing derivation Γ ` Coh(∆ ;A)[σ] : C , and will induct on this derivation to construction a
derivation of Γ ` Coh(∆ ;B)[τ] : C .

• If the derivation is constructed with the conversion rule from Γ ` Coh(∆ ;A)[σ] :
D and Γ ` D = C , then we get a derivation Γ ` Coh(∆ ;B)[τ] : D by inductive
hypothesis and can apply the conversion rule to get a derivation Γ ` Coh(∆ ;B)[τ] : C .

• If instead the derivation is constructed with the coherence rule then C ≡ AJσK and
A ≡ s→A′ t and therefore B ≡ u→B′ v with ∆ ` s = u and ∆ ` t = v. We also
have that ∆ `ps, (∆, Supp(s), Supp(t)) ∈ O, ∆ ` A, and Γ ` σ : ∆. By the inductive
hypothesis on the equality, we have ∆ ` B and Γ ` τ : ∆. By Proposition 2.4.24,
Supp(s) = Supp(u) and Supp(t) = Supp(v) and so (∆, Supp(u), Supp(v)) ∈ O.
Hence, by the coherence rule we have Γ ` Coh(∆ ;B)[τ] : BJτK. By Propositions 2.4.15
and 2.4.16, Γ ` AJσK = BJτK and so by the conversion rule we obtain a derivation
Γ ` Coh(∆ ;B)[τ] : C .

Finally, suppose the equality is derived from Rule, such that (Γ, s, t) ∈ R and Γ ` s : A.
If Γ ` s : B, then the preservation condition gives a derivation Γ ` t : B. Conversely, if
Γ ` t : B, then we need to show that Γ ` A = B. By applying the preservation condition
to the derivation Γ ` s : A, we get a derivation Γ ` t : A. Then by Lemma 2.2.7, we have
Γ ` A = B and so the proof is complete by applying the conversion rule to the derivation
Γ ` s : A.

As with the other conditions, we end this section by showing that dr satisfies the preservation
condition.

Proposition 2.4.34. SupposeR satisfies the weakening condition, and the set of operationsO
contains the standard operations. Then dr satisfies theR-preservation condition.

Proof. Take (Γ,Coh(Dn ;wk(Un))[{A, t}], t) ∈ dr and suppose Γ ` Coh(Dn ;Un)[{A, t}] : B.
Then by Lemma 2.2.7:

Γ ` B = wk(Un)J{A, t}K ≡ A

By Lemma 2.4.8, Γ ` t : A and so by the conversion rule Γ ` t : B as required.

76

2.4.3 Endo-coherence removal
We conclude this chapter with a second example of a family of equality rules called endo-
coherence removal. As suggested by the name, these equalities simplify a class of terms known
as endo-coherences.

Definition 2.4.35. An endo-coherence is a coherence term Coh(∆ ; s→As)[σ].

If we consider the (ps-context):

∆ = (x : ⋆)(y : ⋆)(f : x→⋆ y)(z : ⋆)(g : y →⋆ z)

then we see that there are two distinct endo-coherences with source and target f ∗ g, the
identity on f ∗ g and the “fake identity” Coh(∆ ; f∗g→f∗g)[id∆]. In the type theories Cattsu

and Cattsua introduced in Sections 4.2 and 4.3, identities will be privileged, and these fake
identities will be reduced to the true identity.

More generally, for each term t there is a canonical endo-coherence with source and target t,
the identity on t. Endo-coherence removal simplifies any other endo-coherence on that term
to an identity. It makes the following rule admissible:

∆ `ps ∆ ` A ∆ ` s : A Supp(s) = Var(∆) Γ ` σ : ∆

Γ ` Coh(∆ ; s→As)[σ] = id(AJσK, sJσK) ecR

Endo-coherence removal can be assembled into the following equality rule set.

Definition 2.4.36. The endo-coherence removal set, ecr, is the set consisting of the triples:

Γ,Coh(∆ ; s→As)[σ], id(AJσK, sJσK))
for contexts Γ and ∆, A : Type∆, s : Term∆, and σ : ∆→⋆ Γ.

A set of rules R contains endo-coherence removal if ecr ⊆ R. We say that R has endo-
coherence removal if the rule ecR holds in the generated theory.

The set ecr satisfies all the conditions introduced in this chapter, as proven in the next propo-
sition, which concludes this chapter.

Proposition 2.4.37. Suppose the set of operations O contains the standard operations. Then
the set ecr satisfies the following properties:

(i) The set ecr satisfies the weakening condition.

(ii) The set ecr satisfies the suspension condition.

(iii) The set ecr satisfies theR-substitution condition, for any equality setR.

(iv) The set ecr satisfies theR-support condition, for any equality setR satisfying the support
condition.

(v) The set ecr satisfies the R-preservation condition, for any equality set R satisfying the
weakening and substitution conditions.

77

Proof. Suppose (Γ,Coh(∆ ; s→As)[σ], id(AJσK, sJσK)) ∈ ecr. To show that the substitution
holds, we suppose that τ : Γ→⋆ Θ, and then must prove that:

(Θ,Coh(∆ ; s→As)[σ • τ], id(AJσK, sJσK)JτK) ∈ ecr

It is immediate that:

(Θ,Coh(∆ ; s→As)[σ • τ], id(AJσ • τK, sJσ • τK)) ∈ ecr

and so it suffices to prove that id(AJσK, sJσK)JτK ≡ id(AJσ • τK, sJσ • τK), but this follows
from Lemma 2.2.4(v) and Proposition 2.2.1. The weakening condition then follows from the
substitution condition.

For the suspension condition, it must be shown that:

(Σ(Γ),Coh(Σ(∆) ;Σ(s)→Σ(A)Σ(s))[Σ(σ)],Σ(id(AJσK, sJσK))) ∈ ecr

and so it suffices to show that Supp(Σ(s)) = Var(Σ(∆)), which follows from Supp(Σ(s)) =
Σ(Supp(s)), and

Σ(id(AJσK, sJσK)) ≡ id(Σ(A)JΣ(σ)K,Σ(s)JΣ(σ)K)
which follows from the functoriality of suspension and Lemmas 2.2.4(ii) and 2.2.4(iv).

For the support condition, assume that Γ `R Coh(∆ ; s→As)[σ] : B for some B : TypeΓ and
thatR satisfies the support condition. Then:

Supp(Coh(∆ ; s→As)[σ]) = Supp(σ)
= FV(σ) by Lemma 2.4.25(ii)
= Var(∆)JσK
= Supp(s)JσK by assumption
= (Supp(A) ∪ Supp(s))JσK by Lemma 2.4.25(iv)
= DC∆(FV(A) ∪ FV(s))JσK
= DCΓ(FV(A)JσK ∪ FV(s)JσK) by Corollary 2.4.26
= DCΓ(FV(AJσK) ∪ FV(sJσK)) by Proposition 2.3.3
= Supp(AJσK) ∪ Supp(sJσK)
= Supp(id(AJσK, sJσK))

as required.

Lastly for the preservation condition, let R satisfy the weakening and substitution condi-
tions, and assume Γ ` Coh(∆ ; s→As)[σ] : B. By deconstructing the typing derivation, we
must have that∆ ` A,∆ ` s : A, and Γ ` σ : ∆. Therefore, by Proposition 2.4.15, Γ ` AJσK
and Γ ` sJσK : AJσK. Hence, by Corollary 2.4.9, Γ ` id(AJσK, sJσK) : (s→A s)JσK. It re-
mains to prove that Γ ` (s→A s)JσK = B, but this is immediate from Lemma 2.2.7, applied
to the derivation Γ ` Coh(∆ ; s→As)[σ] : B.

78

Catt.Prelude

Catt.Syntax.Base

Catt.Suspension

Catt.Syntax

Catt.Globular

Catt.Prelude.Properties

Catt.Syntax.Bundles

Catt.Syntax.Properties
Catt.Wedge

Catt.Tree

Catt.Globular.Properties Catt.Variables

Catt.Discs Catt.Pasting Catt.Suspension.Properties Catt.Variables.Properties

Catt.Dyck Catt.Syntax.Complexity

Catt.Wedge.Properties

Catt.Pasting.Properties Catt.Dyck.Properties

Catt.Suspension.Pasting

Catt.Wedge.Pasting

Catt.Discs.Properties
Catt.Support

Catt.Tree.Pasting

Catt.Tree.Properties

Catt.Discs.Pasting
Catt.Support.Properties Catt.Dyck.Pasting

Catt.Ops

Catt.Suspension.Support Catt.Typing.Base
Catt.Discs.Support

Catt.Dyck.Pruning Catt.Dyck.Support

Catt.Typing

Catt.Support.Context

Catt.Tree.Path Catt.Typing.Rule
Catt.Dyck.Pruning.Support Catt.Ops.Pruning Catt.Dyck.Pruning.Properties

Catt.Tree.Structured

Catt.Typing.Rule.Properties

Catt.Typing.Weak

Catt.Tree.Structured.ToTerm Catt.Typing.Properties.Base

Catt.Tree.Structured.Globular

Catt.Tree.Structured.Construct

Catt.Typing.Properties.Weakening

Catt.Tree.Path.Properties

Catt.Tree.Boundary

Catt.Tree.Structured.Properties

Catt.Typing.Properties.Substitution

Catt.Suspension.Typing

Catt.Tree.Standard Catt.Tree.Structured.Globular.Properties

Catt.Wedge.Support

Catt.Typing.Properties.Substitution.Suspended
Catt.Tree.Structured.Construct.Properties

Catt.Typing.Properties

Catt.Tree.Path.Support
Catt.Wedge.Typing Catt.Globular.Typing

Catt.Tree.Structured.Support Catt.Tree.Boundary.Properties

Catt.Tree.Insertion

Catt.Tree.Typing Catt.Tree.Structured.Typing Catt.Discs.Typing.Base Catt.Tree.Path.Typing
Catt.Dyck.Typing

Catt.Dyck.FromTree Catt.Pasting.Typing

Catt.Ops.Insertion
Catt.Tree.Standard.Properties Catt.Tree.Support Catt.Typing.EndoCoherenceRemoval.Rule Catt.Typing.Properties.Support

Catt.Discs.Typing
Deprecated.Tree.Support

Catt.Dyck.Pruning.FromInsertion

Catt.Tree.Structured.Construct.Support Catt.Ops.All

Catt.Tree.Structured.Typing.Properties

Catt.Tree.Insertion.Properties
Catt.Tree.Boundary.Support Catt.Typing.EndoCoherenceRemoval.Support Catt.Typing.EndoCoherenceRemoval.Typed Catt.Typing.EndoCoherenceRemoval

Catt.Typing.DiscRemoval.Rule Deprecated.Tree.Structured.Support
Catt.Dyck.Pruning.Typing Catt.Typing.Properties.Preservation

Deprecated.Ops.Tree

Catt.Tree.Boundary.Typing Catt.Tree.Standard.Support

Deprecated.Tree.Structured.Support.Properties Catt.Typing.Pruning.Rule Catt.Tree.Structured.Typing.Preservation

Catt.Typing.Insertion.Rule
Catt.Tree.Standard.Typing

Catt.Typing.DiscRemoval Catt.Typing.DiscRemoval.Support

Catt.Typing.DiscRemoval.Typed

Catt.Support.Typing

Catt.Typing.Structured.Support

Deprecated.Tree.Boundary.Support Deprecated.Tree.Structured.Construct.Support
Deprecated.Typing.Structured.Support

Catt.Typing.Pruning
Catt.Typing.Pruning.Support Catt.Typing.Pruning.Typed

Catt.Typing.Insertion

Catt.Typing.EndoCoherenceRemoval.Properties

Catt.Tree.Insertion.Typing
Catt.Typing.DiscRemoval.Properties

Deprecated.Tree.Standard.Support

Catt.Typing.Strict.Units

Catt.Typing.Insertion.Typed

Catt.Tree.Insertion.Support

Catt.Typing.Insertion.Equality

Deprecated.Tree.Insertion.Support

Catt.Typing.Insertion.Support

Deprecated.Typing.Insertion.Support

Catt.Typing.Strict.UA

Catt.Typing.Strict.DR

Catt.Tree.Insertion.Boundary.Support

Catt.Ops.Regular

Figure 2.2: Dependency graph of Agda formalisation.

79

80

Chapter 3

Constructions in CattR

This chapter will investigate some more involved constructions that can be given in the type
theory CattR. These constructions will be central to defining the reductions that underpin the
type theories Cattsu and Cattsua which appear in Chapter 4. We will give a definition of each
construction, describe under what conditions it is well-formed, and state various properties de-
scribing the behaviour of the construction and its interaction with other constructions.

For this chapter we will assume that we are working in a tame theory, as described in Sec-
tion 2.4.1. This means that all proofs in this section will hold in any variant of CattR such
that the equality set R satisfies the weakening, substitution, and suspension conditions, and
the set of operations O is suspendable and contains the standard operations. We will also use
all the relevant proofs from Section 2.2, without explaining exactly what condition of the set
R is being used.

The formalisation is commonly more specific when specifying which conditions are necessary
for each module, for example omitting the suspension condition when it is not needed for
a specific construction, but for the body of this text we ignore these distinctions and simply
assume that every theory we work with will be tame, as will be case for all theories introduced
in Chapter 4.

This chapter builds up to the following constructions, that can be viewed as meta-operations
on CattR.

• The pruning operationwill be introduced in Section 3.1 and is themain component of the
type theory Cattsu, defined in Section 4.2, a type theory for strictly unital∞-categories.
Pruning removes unnecessary identities from a term, simplifying the resulting term in
the process.

• The insertion operation will be introduced in Section 3.4. It powers the type theory
Cattsua, a type theory for strictly unital and associative∞-categories. Insertion merges
certain arguments to a coherence into the body of the coherence itself, effectively “in-
serting” the argument into the head term. It can be viewed as a generalisation of pruning,
but is a more complex construction.

Both pruning and insertion perform more radical modifications to the structure of a term than
disc removal and endo-coherence removal, the equality rules we have seen so far. Pruning and
insertion modify the pasting diagram in the coherence at the head of the term they act on. In

81

this chapter, more combinatorial descriptions of pasting diagrams will be introduced to enable
the pasting diagrams involved in these constructions to be constructed by induction.

The pruning construction identifies locally maximal arguments of a coherence that are syntac-
tically identities, and removes these arguments from the term, while also removing the com-
ponent of the pasting diagram in the coherence which corresponds to this argument. Pruning
could be applied to the term f ∗ g ∗ id, a ternary composite, to remove the identity argument
and convert the ternary composite to a binary composite, returning the term f ∗ g.

Insertion does not just simply remove parts of a term, but flattens the structure of a term,
moving data from a locally maximal argument into the head term. The motivating example
for insertion is the term f ∗ (g ∗ h), a binary composite where one of the locally maximal
arguments is itself a binary composite. Under insertion, the inner composite g ∗ h is merged
with the outer binary composite to form a single ternary composite f ∗ g ∗ h.

When a locally maximal argument is an identity, it will always be insertable, and the result
of inserting the identity into the head term will be similar to pruning the same argument,
motivating the viewpoint that insertion is a generalisation of pruning. At the end of this
chapter, this relationship will be made precise.

Insertion again performsmore radical changes to the head coherence of the term than pruning,
and needs to be able tomerge two pasting diagrams into one along a locally maximal argument.
The operation on pasting diagrams is best understood as an operation on trees, an alternative
characterisation of pasting diagrams which will be introduced in Section 3.2.

Although the definition of these trees is simple, to be able to use them effectively we must be
able to describe their relationship to the Catt contexts they represent. It will also be necessary
to describe themorphisms between these trees, which correspond to substitutions between the
underlying contexts, and the composition of such morphisms.

Certain constructions on trees will not compute nicely with the syntax in Catt. We there-
fore introduce a new notion of structured term, an alternative syntax for Catt which allows
more complex representations of terms over contexts derived from trees. Structured terms
effectively retain more information about how they are constructed, allowing constructions
to compute on them in ways that are not possible on the raw syntax of Catt. This represen-
tation of terms will be crucial in the formalisation, as it aids the proof assistant in simplifying
various constructions. These structured terms are defined in Section 3.3.

Finally, Section 3.4 defines the constructions used in the insertion operation, using the struc-
tured syntax from the preceding section. In this section, many properties of insertion are
stated, including a universal property that it satisfies.

3.1 Pruning
Pruning drives the strictly unital behaviour of Cattsu. Unitality in∞-categories is the prop-
erty that the identity acts as a unit with respect to composition, so that composing with the
unit is equivalent to the original term. If an∞-category is strictly unital, then it exhibits this
behaviour up to equality rather than equivalence.

For Catt, strict unitality means that a composition containing an identity as one of its argu-
ments should be definitionally equal to the term with this argument removed. Pruning is the

82

operation that removes an argument from a composition, taking a term such as f ∗ g ∗ id to
f ∗ g, or id ∗ f to the unary composite on f . In the presence of strict units, it is also desir-
able to simplify the higher-dimensional data that witnessed the (weak) unitality in Catt. For
example, the left unitor on f , given by the term:

Coh((x:⋆),(y:⋆),(f :x→⋆y) ; id(x)∗f→f)[id]

which witnesses that composing on the left with an identity is equivalent to the original term,
can be simplified to the identity on f , and the triangle equations which govern the coherence
laws for the unitors can also trivialise. For this reason, pruning is defined to be able to apply
to any term which has identities as a locally maximal argument. We review the definition of
a locally maximal argument below.

Definition 3.1.1. In a context Γ, a locally maximal variable is a variable x of Γ that does not
appear in the source or target of any other variable of Γ. Equivalently, x is locally maximal
when:

x 6∈ Supp(y)

for any y 6= x ∈ Var(Γ). Given a substitution σ : ∆→ Γ, a locally maximal argument of σ
is a term xJσK where x is a locally maximal variable of ∆.

Example 3.1.2. Consider the pasting diagram given by the following diagram:

x y z

f

h

g
j

α

β

which corresponds to the Catt context (written to highlight the dimension of each term):

Θ = (x : ⋆),

(y : ⋆), (f : x→ y),

(g : x→ y), (α : f → g),

(h : x→ y),(β : g → h),

(z : ⋆), (j : y → z)

The locally maximal variables ofΘ are α, β, and j. Note that j is locally maximal, despite not
being of maximal dimension in the context. Pruning the context Θ along locally maximal
variable α removes the variables α and g from the context, and must amend the type of β
so that its source is f .

To perform the pruning construction, we start with a coherence term Coh(∆ ;A)[σ] : TermΓ,
and assume that some locally maximal argument of σ is an identity, that is xJσK ≡ id(B, t)
for some locally maximal variable x, type B : TypeΓ, and term t : TermΓ. We then construct
the following:

• A new pasting diagram ∆ � x, corresponding to ∆ with the variable x and its target
removed.

83

• A new set of arguments σ � x, consisting of the same terms as σ except those corre-
sponding to x and its target.

• A projection substitution πx : ∆ → ∆ � x, from which a type AJπxK : Type∆�x can
be obtained. This projection sends x to the identity on its source, the target of x to the
source of x, and every other variable to itself.

We note that the source and target of the locally maximal variable x are well-defined as xmust
be sent by σ to an identity, which cannot be zero dimensional.

3.1.1 Dyck words
To be able to easily reason about the structures involved in pruning, we wish to define them
by induction. To do this we introduce a different presentation of pasting diagrams called
Dyck words, which have a simpler inductive structure. Dyck words more directly encode the
structure of the pasting diagram, and will allow us to give an inductive characterisation of the
locally maximal variables of the associated context.

Definition 3.1.3. The set of Dyck words, Dyckd of trailing dimension d consists of lists of
“up” and “down” moves according to the following rules.

⊖ : Dyck0

d : N D : Dyckd
D ⇑: Dyckd+1

d : N D : Dyckd+1

D ⇓: Dyckd

In any prefix of a Dyck word D : Dyckd, the number of “up” moves (given by constructor
⇑) must be greater than or equal to the number of “down” moves (given by constructor ⇓).
The difference between the number of each move is given by the trailing dimension d.

Dyck words can be given a visual interpretation as a mountain diagram. To obtain such a
diagram we start on the left-hand side, and draw a continuous line by drawing an upwards
sloping segment for each ⇑ in the word, and a downwards sloping line for each ⇓ in the word.
An example of such a diagram is given in Figure 3.1.

• •

• • • •

• • •

Figure 3.1: Mountain diagram for ⊖ ⇑⇑⇓⇑⇓⇓⇑⇓ : Dyck0.

The rules ⊖, ⇑, and ⇓ directly correspond to the rules pss, pse, and psd that generate the
typing judgement for ps-contexts. From a Dyck word, we can directly construct this context
by induction.

Definition 3.1.4. For a Dyck word D : Dyckd, its associated context bDc, associated type

84

TyD : Type⌊D⌋, and associated term TmD : Term⌊D⌋ are defined by mutual induction on D:

b⊖c = (x : ⋆)

bD ⇑c = bDc, (yD : TyD), (fD : wk(TmD)→wk(TyD) yD)

bD ⇓c = bDc

Ty⊖ = ⋆

TyD⇑ = wk(wk(TmD))→wk(wk(TyD)) yD

TyD⇓ = base(TyD) where base(s→A t) = A

Tm⊖ = x

TmD⇑ = fD

TmD⇓ = tgt(TyD) where tgt(s→A t) = t

The variable names given here are used to avoid ambiguity in the definition. As we consider
contexts up toα-equality, wemay freely change these variable names. The tgt and base oper-
ations are well-defined here as it may be checked by a simple induction that dim(TyD) = d
for D : Dyckd, ensuring that we only apply tgt and base to types of strictly positive dimen-
sion.

The tight correspondence between the rules used to construct Dyck words and ps-contexts al-
low an easy proof that the contexts associated toDyckwords are in fact pasting diagrams.

Lemma 3.1.5. For a Dyck word D : Dyckd, its associated context, type, and term are all
well-formed:

bDc ` bDc ` TyD bDc ` TmD : TyD
In addition to being a well-formed context, the context associated to a Dyck word is a ps-context;
the following judgement holds:

bDc `ps TmD : TyD
and so if D : Dyck0, we have bDc `ps. Further, all ps-contexts are the associated context of a
Dyck word.

Proof. Due to the similarity of the rules for ps-contexts and Dyck words, this follows quickly
from simple inductions, which are given in the formalisation. The proofs for the typing
judgements appear in Catt.Dyck.Typing and the proofs for the ps-context judgements appear
in Catt.Dyck.Pasting.

The locally maximal variables in the context associated to a Dyck word correspond exactly
to the points in the word where there is an upwards move followed immediately by a down-
wards move, creating a peak in the mountain diagram. These peaks can be given an inductive
characterisation.

Definition 3.1.6. Let D : Dyckd be a Dyck word. A peak of D, p : PeakD is inductively

85

https://alexarice.github.io/catt-agda/Catt.Dyck.Typing.html
https://alexarice.github.io/catt-agda/Catt.Dyck.Pasting.html

defined by the following rules:

d ∈ N D : Dyckd
D mpk: PeakD⇑⇓

d ∈ N D : Dyckd p : PeakD
p ⇑pk: PeakD⇑

d ∈ N D : Dyckd+1 p : PeakD
p ⇓pk: PeakD⇓

From each peak p : PeakD, a term bpc of bDc can be inductively defined by:

bD mpkc = fD bp ⇑pkc = wk(wkbpc) bp ⇓pkc = bpc

The term bpc is a locally maximal variable of bDc.

Example 3.1.7. Recall the ps-context Θ from Example 3.1.2. This context is the associated
context of the Dyck word:

⊖ ⇑⇑⇓⇑⇓⇓⇑⇓
for which the mountain diagram is given in Figure 3.1. The three locally maximal variables
α, β, and j correspond to the peaks:

⊖ ⇑mpk ⇑pk ⇓pk ⇓pk ⇑pk ⇓pk ⊖ ⇑⇑⇓mpk ⇓pk ⇑pk ⇓pk ⊖ ⇑⇑⇓⇑⇓⇓mpk

which themselves correspond to the three peaks of the mountain diagram, with the height
of each peak corresponding to the dimension of each locally maximal variable.

All disc contexts are pasting diagrams, and hence are the associated context of aDyckword.

Definition 3.1.8. Let Dn be the Dyck word with n upwards moves followed by n down-
wards moves. The equality bDnc ≡ Dn follows from a trivial induction. If n > 0, There is a
unique peak of Dn with associated term dn.

We lastly show that a Dyckword can be suspended, which is expected as ps-contexts are closed
under suspension. The various constructions associated to a suspended Dyck word are equal
to the same constructions on the unsuspended Dyck word.

Lemma 3.1.9. Dyck words are closed under suspension. We define the suspension of a Dyck
word D : Dyckd to be the Dyck word Σ(D) : Dyckd+1 which is obtained by inserting an
additional up move to the start of the word, or can alternatively be inductively defined by:

Σ(⊖) = ⊖ ⇑ Σ(D ⇑) = Σ(D) ⇑ Σ(D ⇓) = Σ(D) ⇓

The following equalities hold:

bΣ(D)c = Σ(bDc) TyΣ(D) = Σ(TyD) TmΣ(D) = Σ(TmD)

for each Dyck word D. For each peak p : PeakD, there is an associated peak Σ(p) : PeakΣ(D)

which is defined similarly.

86

Proof. These properties are all proved by straight forward induction on D. The formalised
proofs appear in Catt.Dyck.Properties.

The Dyck words presented in this section can be viewed as a more direct syntax for pasting
contexts, which allow induction to be easily performed. For this reason, most of the properties
of Dyck words follow from routine inductions, and hence are relegated to the formalisation.
The key contribution of this (sub)section is the characterisation of locally maximal variables
as peaks, which have an easy inductive definition due to the simplicity of Dyck words.

Remark 3.1.10. All locally maximal variables of ps-contexts are identified with peaks, except
for the unique variable of the singleton context. This discrepancy will make no difference
for pruning, as a 0-dimensional variable could never have been sent to an identity and so
would never have been a candidate for pruning.

3.1.2 The pruning construction
Equipped with Dyck words, and a classification of locally maximal variables as peaks, we are
now able to define each of the constructions used in the pruning operation.

Definition 3.1.11. Let D : Dyckd be a Dyck word, and p : PeakD be a peak of D. The
pruned Dyck word D � p : Dyckd and substitution πp : bDc → bD � pc are then defined
inductively on the peak p by the following equations:

D ⇑⇓ �D mpk = D
D ⇑ �p ⇑pk = (D � p) ⇑
D ⇓ �p ⇓pk = (D � p) ⇓

πD⇕pk = 〈id⌊D⌋,TmD, id(TyD,TmD)〉
πp⇑pk = 〈wk(wk(πp)), yD, fD〉
πp⇓pk = πp

If we further have a substitution σ : bDc →⋆ Γ for some context Γ, then the pruned substi-
tution σ � p : bD � pc →⋆ Γ can be formed:

〈σ, s, t〉 �D mpk = σ

〈σ, s, t〉 � p ⇑pk = 〈σ � p, s, t〉
σ � p ⇓pk = σ � p

Each peak in a Dyck word corresponds to a consecutive upwards arrow and downwards arrow.
Pruning this peak corresponds removing these two arrows, which does not change the trailing
dimension of the Dyck word. The effect on the mountain diagram representation can be seen
in Figure 3.2.

When a peak is pruned the locally maximal variable and its target are removed from the asso-
ciated context. The substitution πD⇕pk simply maps these two variables to id(TyD,TmD) and
TmD, where the Dyck term TmD is the source of the locally maximal variable. Pruning a sub-
stitution simply removes the terms corresponding to the removed variables in the associated

87

https://alexarice.github.io/catt-agda/Catt.Dyck.Properties.html

• • •

• • • • ⇝ • • •

• • • • • •

Figure 3.2: Pruning of peak ⊖ ⇑mpk ⇑pk ⇓pk ⇓pk ⇑pk ⇓pk.

context.

Example 3.1.12. Let Γ = (x : ⋆), (f : x→⋆ x) and consider the term f ∗ id(x), which is
given by:

Coh((a:⋆),(b:⋆),(c:a→b),(d:⋆),(e:b→d) ; a→d)[〈x, x, f, x, id(⋆, x)〉]

The context in this coherence is the associated context of the Dyck word ⊖ ⇑⇓⇑⇓ which
has a peak ⊖ ⇑⇓mpk, which corresponds to the locally maximal variable e. Since e is sent
to an identity by the substitution, pruning can be applied to get:

⊖ ⇑⇓⇑⇓ �⊖ ⇑⇓mpk = ⊖ ⇑⇓
π⊖⇑⇓⇕pk = 〈a, b, c, b, id(⋆, b)〉

〈x, x, f, x, id(⋆, x)〉 �⊖ ⇑⇓mpk = 〈x, x, f〉
Which results in the term:

Coh((a:⋆),(b:⋆),(c:a→b) ; (a→d)J⟨a,b,c,b,id(⋆,b)⟩K)[〈x, x, f〉] ≡ Coh((a:⋆),(b:⋆),(c:a→b) ; (a→b))[〈x, x, f〉]

which is the unary composite on f . In the presence of disc removal, this term could further
simplify to the variable f .

With these constructions, we can define the pruning rule.

Definition 3.1.13. A term t is an identity if t ≡ id(A, s) for some type A and some term s.
The pruning rule set, prune, is the set consisting of the triples:

(Γ,Coh(⌊D⌋ ;A)[σ],Coh(⌊D�p⌋ ;AJπpK)[σ � p])

for each Dyck word D : Dyck0, peak p : PeakD, type A : Type⌊D⌋, and substitution σ :
bDc →⋆ Γ where bpcJσK is an identity.

A set of rules R contains pruning if prune ⊆ R. Pruning makes the following rule admissi-
ble:

D : Dyck0 p : PeakD bDc ` A Γ ` σ : bDc
(bDc, Supp(src(A)), tgt(A)) ∈ O bpcJσK is an identity

Γ ` Coh(⌊D⌋ ;A)[σ] = Coh(⌊D�p ;AJπpK)[σ � p]
pRune

The setR has pruning if the rule pRune holds in the generated theory.

88

3.1.3 Properties of pruning
We start with the aim of proving that each construction involved in pruning satisfies the ex-
pected typing judgements. To do this the following lemma will be necessary, which describes
the interaction of the Dyck word construction with pruning.

Lemma 3.1.14. Let D : Dyckd be a Dyck word. Then the following equations hold:

TyDJπpK ≡ TyD�p
TmDJπpK ≡ TmD�p

for any peak p : PeakD of D.

Proof. The proof proceeds by an induction on the peak p, proving both equations simultane-
ously. Both equations hold by routine calculations given in Catt.Dyck.Pruning.Properties
by the functions dyck-type-prune and dyck-term-prune.

This allows the main typing properties of this section to be given.

Proposition 3.1.15. Let D : Dyckd be a Dyck word and let p : PeakD be a peak of this word.
Then:

bD � pc ` πp : bDc

Given a substitution σ with Γ ` σ : bDc, where bpcJσK is an identity, the equality and typing
judgements:

Γ ` σ = πp • (σ � p) Γ ` σ : bD � pc

hold.

Proof. We prove each judgement holds in turn by induction on the peak p. For the judge-
ment:

bD � pc ` πp : bDc

the case when the peak is of the form p ⇓pk is trivial. The case for when it is of the form
D mpk easily follows from Lemma 3.1.5 and Corollary 2.4.9. For the case where the peak is
of the form p ⇑pk, it must be shown that:

∆ ` 〈wk(wk(πp)), y, f〉 : bDc, (y : TyD), (f : wk(TmD)→wk(TyD) y)

where ∆ = bD � pc, (y : TyD�p), (f : wk(TmD�p)→wk(TyD�p)
y). This requires proofs of:

∆ ` wk(wk(πp)) : bDc
∆ ` y : TyDJπpK
∆ ` f : (wk(TmD)→wk(TyD) y)J〈wk(πp), y〉K

The first part follows from inductive hypothesis (and typing of weakening). The other two
judgements follow from some calculation and Lemma 3.1.14.

For the second judgement:
Γ ` σ = πp • (σ � p)

89

https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#dyck-type-prune
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#dyck-term-prune

The p ⇓pk case is again trivial. The p ⇑pk case follows easily from properties of weakening
and the inductive hypothesis. For theD mpk case we suppose the substitution is of the form
〈σ, s, id(A, t)〉 and are required to show that:

Γ ` 〈idD,TmD, id(TyD,TmD)〉 • σ = 〈σ, s, id(A, t)〉

It is immediate that idD • σ ≡ σ and so it remains to show that Γ ` TmDJσK = s and
Γ ` id(TyD,TmD)JσK = id(A, t). By deconstructing the typing derivation of 〈σ, s, id(A, t)〉,
we have:

Γ ` id(A, t) : (wk(TmD)→wk(TyD) y)J〈σ, s〉K
By Corollary 2.4.9 and the uniqueness of typing, we must have:

Γ ` t→A t = (wk(TmD)→wk(TyD) y)J〈σ, s〉K ≡ TmDJσK→TyDJσK s
and so A = TyDJσK and s = t = TmDJσK. The equality id(TyD,TmD) = id(A, t) fol-
lows as equality is respected by the identity construction, which can be proved by a simple
induction.

Lastly, we consider the judgement:

Γ ` σ � p : bD � pc

The only difficult case is for the peak p ⇑pk, where we can assume that the substitution is of
the form 〈σ, s, t〉, such that:

〈σ, s, t〉 � p ⇑pk≡ 〈σ � p, s, t〉

Typing for σ � p follows from inductive hypothesis, and the typing for s and t follow from
applying conversion rules to the corresponding parts of the typing derivation for 〈σ, s, t〉.
After some computation, the following equalities are needed for these conversion rules:

Γ ` TmDJσK = TmD�pJσ � pK
Γ ` TyDJσK = TyD�pJσ � pK

The first is given by:

TmDJσK = TmDJπp • (σ � p)K
≡ TmDJπpKJσ � pK
≡ TmD�pJσ � pK

and the second follows similarly, completing the proof.

We next show that pruning has the expected properties on the Dyck words Dn, which corre-
spond to disc contexts.

Proposition 3.1.16. Let n > 0, and p be the unique peak of Dn. Then:

Dn � p ≡ Dn−1 {s→A t, u} � p ≡ {A, s}

90

for all A, s, t, u where dim(A) = n− 1.

Proof. Both properties are immediate.

We now turn our attention to proving that the pruning equality set satisfies all the conditions
from Section 2.4. We begin with the tameness conditions, omitting the weakening condition,
as it follows from the substitution condition.

Proposition 3.1.17. For all D : Dyckd and peaks p : PeakD, and substitutions σ : bDc → ∆
and τ : ∆→ Γ the following equality holds:

(σ � p) • τ ≡ (σ • τ) � p

Hence, the set prune satisfies the R-substitution condition for any equality set R, and so also
satisfies the weakening condition.

Furthermore, the following equalities hold:

Σ(D) � Σ(p) = Σ(D � p) πΣ(p) ≡ Σ(πp) Σ(σ � p) ≡ Σ(σ) � Σ(p)

Therefore, the set prune also satisfies the suspension condition, making the equality set prune
tame.

Proof. The proofs of each syntactic equality are easily proved by induction on the peak
p. Their proofs are given in the formalisation in Catt.Dyck.Pruning.Properties as //s-sub,
prune-susp-peak, susp-π, and susp-//s.

To show that the support property holds, we must prove that Supp(σ) = Supp(σ � p). We
aim to do this by observing that Supp(σ) = Supp(πp • (σ � p)) and that Supp(πp • (σ �
p)) = Supp(σ � p). By employing the proof strategy for the support condition introduced in
Section 2.4.2, the first will follow from the equality σ = πp • (σ � p), which we can assume
holds in a theory which satisfies the support condition. For the second we need the following
lemma.

Lemma 3.1.18. For all n : N, ϵ ∈ {−,+}, D : Dyckd, and p : PeakD:

∂ϵn(bDc)JπpK = ∂ϵn(bD � pc)

and so Supp(πp) = Var(bD � pc).

Proof. The main equation in this lemma is given by a long and technical induction on the
peak p. The details of this induction appear in the formalisation in the function π-boundary-
vs which appears in the module Catt.Dyck.Pruning.Support.

The equation Supp(πp) = Var(bD � pc) follows from Proposition 2.3.3 and Lemma 2.3.8, by
setting n = dim(bDc).

We are now ready to prove that the support condition holds.

91

https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#//s-sub
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-susp-peak
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#susp-π
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#susp-//s
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Support.html#π-boundary-vs
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Support.html#π-boundary-vs
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Support.html

Proposition 3.1.19. Let R be a tame equality rule set that satisfies the support condition.
Then the set prune satisfies theR-support condition.

Proof. It suffices to prove that:

Supp(Coh(⌊D⌋ ;A)[σ]) = Supp(Coh(⌊D�p⌋ ;AJπpK)[σ � p])

forD : Dyck0, p : PeakD, typeA, and substitution σ : bDc → Γ, where bpcJσK is an identity
and Γ `R Coh(⌊D⌋ ;A)[σ] : B for some B. By inspection of the typing derivation we obtain
an instance of the judgement Γ `R σ : bDc, and so:

Supp(Coh(⌊D⌋ ;A)[σ]) = Supp(σ)
= Supp(πp • (σ � p)) (∗)
= Supp(πp)Jσ � pK
= Var bD � pcJσ � pK by Lemma 3.1.18
= Supp(σ � p)

= Supp(Coh(⌊D�p⌋ ;AJπpK)[σ � p])

where equality (∗) is derived by applying Proposition 2.4.24 to the equality

Γ `R σ = πp • (σ � p)

from Proposition 3.1.15.

To prove that the preservation condition holds, it is necessary to show that the type AJπpK
created by pruning is a valid operation. This cannot be deduced from any of the conditions
that have been imposed on the operation set O so far. Therefore, we introduce the following
additional condition.

Definition 3.1.20. An operation setO supports pruning if for allD : Dyck0, p : PeakD, and
variable sets U, V ⊆ Var(bDc) we have:

(bD � pc, UJπpK, V JπpK) ∈ O
whenever (bDc, U, V) ∈ O.

The globular operation set trivially supports pruning. FromLemma 3.1.18 and Proposition 2.3.10,
it can be proved that the regular operation set supports pruning. We can now prove that the
preservation condition holds.

Proposition 3.1.21. LetR be a tame equality rule set and suppose the operation setO supports
pruning. Then the set prune satisfies theR-preservation condition.

Proof. Let D : Dyckd be a Dyck word and p : PeakD be a peak of D. Further suppose
s→A t : Type⌊D⌋, and σ : bDc → Γ such that bpcJσK is an identity and:

Γ `R Coh(⌊D⌋ ; s→At)[σ] : B

92

for some type B : TypeΓ. By inspection on this typing derivation we have:

bDc `R A Γ `R σbDc (bDc, Supp(s), Supp(t)) ∈ O Γ `R B = (s→A t)JσK
and so by Proposition 3.1.15, we have:

bD � pc `R πp : bDc Γ `R σ � p : bD � pc

therefore, as O supports pruning, the following judgement holds:

Γ `R Coh(⌊D�p⌋ ; (s→At)JπpK)[σ � p] : (s→A t)JπpKJσ � pK
and so by applying the conversion rule, it suffices to show that

Γ `R B = (s→A t)JπpKJσ � pK
but this follows from the equality B = (s→A t)JσK and the equality σ = πp • (σ � p) from
Proposition 3.1.15.

We end this section with a property of pruning that will be required to prove confluence. Sup-
pose we have a Dyck word D and two distinct peaks p, q : PeakD. Then both peaks can be
pruned from D in either order. Consider the example below on the Dyck word from Exam-
ple 3.1.7.

•

• • •

• • •

• • ⇝ ⇝ •

• • • • • •

• • • • •
⇝ • • ⇝

• • •

• •
The following proposition proves that both peaks of the Dyck word can be pruned, and that
the order in which this is done does not matter.

Proposition 3.1.22. Suppose D : Dyckd is a Dyck word and let p and q be two distinct peaks
of D. Then there is a peak qp of D � p such that:

bqpc ≡ bqcJπpK
and a similar peak pq of D � q. Furthermore, the following equations hold syntactically:

(D � p) � qp = (D � q) � pq πp • πqp ≡ πq • πpq (σ � p) � qp = (σ � q) � pq

where the last equation holds for any σ : bDc → Γ.

93

Proof. All proofs proceed by a simultaneous induction on both the peaks p and q, and are
given in Catt.Dyck.Pruning.Properties in the formalisation. The construction of the peak qp
is given by the function prune-peak, the equality bqpc ≡ bqcJπpK is given by prune-peak-
prop, and the remaining three equations are given by prune-conf, π-conf, and prune-sub-
conf.

3.2 Trees
During the next sections we build up to defining the insertion operation. This operation per-
forms larger modifications to pasting diagrams than the pruning operation, and we will again
want to represent pasting diagrams differently to make the definition in Section 3.4 as natural
as possible. It is well known that pasting diagrams correspond to planar rooted trees [Web04;
Lei04; Bat98b], which we will simply refer to as trees and can be defined as follows.

Definition 3.2.1. A tree T : Tree is inductively defined to be a (possibly empty) list of trees.

Throughout this section we will make use of standard operations and notations for lists. A list
that contains the elements xi for i from 0 to n will be written in square bracket notation as
[x0, x1, x2, . . . , xn]. Further, we use the notation [] for the empty list and ++ for the concate-
nation of lists, which is associative and has the empty list as its unit. We will use the Agda-like
notation of writing n :: ns for a list for which the first element (the head) is n and the rest of
the list (the tail) is ns. The length of a list will be given by the operation len.

We will use the notation Σ(T) = [T], and call Σ(T) the suspension of T , for reasons that will
become immediate once the context generated by a tree has been defined in Section 3.2.2.

We note that it will be common to see expressions of the form S :: T where S and T are both
trees. It may seem as if this was an error, and that a concatenation operation should have been
given instead, but in this case we are exploiting the identification of trees and lists of trees to
treat S as a tree (as an element of the list) and T as a list of trees.

We now define some common operations on trees.

Definition 3.2.2. The height of a tree h(T) is 0 if T is empty or 1 + maxk h(Tk) if T =
[T0, . . . , Tn]. For a tree T , its trunk height, th(T), is 1 + th(T0) if T = [T0] and 0 otherwise.
A tree is linear if its trunk height equals its height.

Subtrees of a tree can be indexed by a list of natural numbers P , giving a subtree T P by
letting T [] = T and T k::P = (Tk)

P if T = [T0, . . . , Tn].

As these trees represent pasting diagrams, a context can be associated to each one. To be
able to make effective use of trees we will need to understand this mapping to contexts, and
the associated constructions used in this mapping. One of these constructions is suspension,
which we have already seen. The second is an operation known as the wedge sum, which will
be introduced in Section 3.2.1. Both these operations are mappings from contexts to contexts
which preserve ps-context derivations. We will see in Section 3.2.2 that a further result holds,
that these two operations (along with the singleton context) are sufficient to generate all ps-
contexts.

94

https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-peak
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-peak-prop
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-peak-prop
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-conf
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#π-conf
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-sub-conf
https://alexarice.github.io/catt-agda/Catt.Dyck.Pruning.Properties.html#prune-sub-conf

Remark 3.2.3. In the formalisation, trees are binary and defined in Catt.Tree. This exploits an
isomorphism between binary trees and trees with arbitrary (finite) branching. The construc-
tors for the trees in the formalisation are called Sing, which stands for “singleton” and takes
no arguments, and Join, which takes two trees as arguments. The isomorphism is generated
from the following rules:

Sing ' []

S ' S ′ T ' T ′

Join(S, T) ' S ′ :: T ′

Presenting trees in this way in the formalisation allows any induction to be done as a single
induction over the constructors of a tree, instead of simultaneously inducting on the height
of the tree and on lists. We retain the standard notation of trees for this text for simplicity
of notation. Under the above isomorphism, this has no effect on the formal development.

3.2.1 Wedge sums
The wedge sum, just like suspension, is an operation inspired by a similar operation on topo-
logical spaces. Given two spacesX and Y and points x ofX and y of Y , the spaceX ∨ Y can
be formed, by taking the disjoint union of X and Y , and identifying the points x and y.

This construction satisfies a universal property: it is the colimit of the following diagram:

X Y

{∗}
x y

(3.2.4)

where the arrows labelled x and y send the unique point ∗ to x and y respectively. Such a
universal construction gives rise to two inclusions:

inlX;Y : X → X ∨ Y inrX;Y : Y → X ∨ Y

A similar colimit can be formed in the syntactic category of CattR. Leveraging that the
variables of a context are ordered, every (non-empty) context in Catt is naturally bipointed.
For a context Γ, the first point is given by the first variable of the context (which must have
type ⋆), which we name fst(Γ), and the second point is given by the last 0-dimensional variable
in the context, which we name snd(Γ). We therefore restrict the construction above to when
the chosen point for the left context Γ is snd(Γ) and the chosen point for the second context
is fst(∆). This simplifies the construction, and will be the only case we need for forming trees.
We note that fst(Σ(Γ)) ≡ N and snd(Σ(Γ)) ≡ S, as we will commonly take the wedge sums
of suspended contexts.

Definition 3.2.5. Let Γ and ∆ be non-empty contexts. We then mutually define the wedge
sum Γ ∨∆ and inclusions inlΓ;∆ : Γ→⋆ Γ ∨t ∆ and inrΓ;∆ : ∆→⋆ Γ ∨∆ by induction on

95

https://alexarice.github.io/catt-agda/Catt.Tree.html

the context ∆, noting that the base case is ∆ = (x : A) as ∆ is non-empty.

Γ ∨ (x : A) = Γ

Γ ∨∆, (x : A) = Γ ∨∆, (x : AJinrΓ;∆K)
inlΓ;∆ = wkn−1(idΓ) when ∆ has length n

inrΓ;(x:A) = 〈snd(Γ)〉
inrΓ;∆,(x:A) = 〈wk(inrΓ;∆), x〉

If we further have substitutions σ : Γ→A Θ and τ : ∆→A Θ, then we can define the
substitution σ ∨ τ : Γ ∨∆→A Θ again by induction on ∆:

σ ∨ 〈A, s〉 = σ

σ ∨ 〈τ, s〉 = 〈σ, s〉

We note that no extra property is needed to define this universal map, though to show it is
well-formed we will need that snd(Γ)JσK = fst(∆)JτK.

We firstly prove some basic properties required forΓ∨∆ to be the colimit of Diagram 3.2.4.

Lemma 3.2.6. Let Γ and ∆ be non-empty contexts. Then:

inlΓ;∆ ∨ inrΓ;∆ ≡ idΓ∨∆

Further, the following equations hold:

inlΓ;∆ •(σ ∨ τ) ≡ σ inrΓ;∆ •(σ ∨ τ) ≡ τ

for substitutions σ : Γ→A Θ and τ : ∆→A Θ where the second equality requires that
snd(Γ)JσK ≡ fst(∆)JτK. Lastly:

(σ ∨ τ) • µ ≡ (σ • µ) ∨ (τ • µ)

where µ : Θ→B Θ′ is another substitution.

Proof. Proofs appear as sub-from-wedge-prop, sub-from-wedge-inc-left, sub-from-wedge-
inc-right, and sub-from-wedge-sub in Catt.Wedge.Properties.

To simplify definitions of substitutions between wedge sums of contexts, we will write sub-
stitutions diagrammatically by specifying the individual components. Consider the following
diagram:

Γ′ ∨ ∆′ ∨ Θ′

Γ ∨ ∆

σ τ

which is generated from substitutions σ : Γ → Γ′ and τ : ∆ → ∆′. A substitution Γ ∨∆ →
Γ′∨∆′∨Θ′ can be generated by composing each arrow in the diagramwith suitable inclusions

96

https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#sub-from-wedge-prop
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#sub-from-wedge-inc-left
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#sub-from-wedge-inc-right
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#sub-from-wedge-inc-right
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#sub-from-wedge-sub
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html

so that its target is Γ′ ∨∆′ ∨ Θ′, and then using the universal property of the wedge to map
out of the source context. In the diagram above the generated substitution is:

((σ • inlΓ′;∆′ • inlΓ′∨∆′;Θ′) ∨ (τ • inlΓ′;∆′ • inrΓ′∨∆′;Θ′))

To ensure these definitions are unique, the following proposition is needed:

Proposition 3.2.7. The wedge sum ∨ is associative and has the singleton context (x : ⋆) as its
left and right unit. Given a context Γ, the inclusions satisfy the following unitality properties:

inlΓ;(x:⋆) ≡ idΓ inr(x:⋆);Γ ≡ idΓ

and given substitutions σ : Γ→A Ξ, τ : ∆→A Ξ, and µ : Θ→A Ξ we have:

(σ ∨ τ) ∨ µ ≡ σ ∨ (τ ∨ µ)

There is a unique way of including each of the contexts Γ, ∆, and Θ into Γ ∨ ∆ ∨ Θ, that is
there is a unique substitution Γ → Γ ∨ ∆ ∨ Θ which is built from a composite of inclusions
and similarly for ∆ and Θ.

Proof. The proofs of these are given in Catt.Wedge.Properties, and are all given by induct-
ing on the right most context. The proof for the right unitality of ∨ is omitted from the
formalisation as it is immediate from the definitions.

The uniqueness of inclusions substitutions is given by

• wedge-inc-left-assoc, which says:

inlΓ;∆ • inlΓ∨∆;Θ : Γ→ (Γ ∨∆) ∨Θ ≡ inlΓ;∆∨Θ : Γ→ Γ ∨ (∆ ∨Θ)

• wedge-incs-assoc, which says:

inrΓ;∆ • inlΓ∨∆;Θ : ∆→ (Γ ∨∆) ∨Θ ≡ inl∆;Θ • inrΓ;∆∨Θ : ∆→ Γ ∨ (∆ ∨Θ)

• wedge-inc-right-assoc, which says:

inrΓ∨∆;Θ : Θ→ (Γ ∨∆) ∨Θ ≡ inr∆;Θ • inrΓ;∆∨Θ : Θ→ Γ ∨ (∆ ∨Θ)

We note that the definition of the wedge sum differs slightly in the formalisation, specifying
a term t in Γ which takes the role of snd(Γ), in order to give more computational control.
By replacing the terms t in the formalisation by snd(Γ) for the appropriate context Γ, and
noting that snd(∆)JinrΓ;∆K ≡ snd(Γ ∨∆) (which can be proved by an easy induction), the
results written here can be recovered.

The previous proposition ensures that the diagrammatic notation for substitutions between
wedge sums uniquely defines a substitution. We next show that all the constructions in this
section have the expected typing properties.

97

https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#wedge-inc-left-assoc
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#wedge-incs-assoc
https://alexarice.github.io/catt-agda/Catt.Wedge.Properties.html#wedge-inc-right-assoc

Lemma 3.2.8. The following inference rules are admissible in CattR:

Γ ` ∆ `
Γ ∨∆ ` Γ ∨∆ ` inlΓ;∆ : Γ Γ ∨∆ ` inrΓ;∆ : ∆

Θ ` snd(Γ)JσK = fst(∆)JτK
Θ ` inrΓ;∆ •(σ ∨ τ) = τ

Θ ` σ : Γ Θ ` τ : Γ Θ ` snd(Γ)JσK = fst(∆)JτK
Θ ` σ ∨ τ : Γ ∨∆

Θ ` σ = σ′ Θ ` τ = τ ′

Θ ` σ ∨ τ = σ′ ∨ τ ′

Proof. All proofs are given in Catt.Wedge.Typing.

We finally show that the wedge sum preserves pasting diagrams, the property that wedge
sums were initially introduced for.

Proposition 3.2.9. The wedge sum of two ps-contexts is a ps-context: If Γ `ps and∆ `ps, then
Γ ∨∆ `ps

Proof. It can first be proven that if the derivation Γ `ps is generated by Γ `ps x : ⋆, then
x ≡ snd(Γ), by showing for all derivations Γ `ps x : A, where dim(A) > 0 that the 0-target
of the typeA is snd(Γ) by induction, and then case splitting on the original derivation. Then
Γ `ps implies that Γ `ps snd(Γ) : ⋆.

The statement of the proposition is then proven by induction on the following statement: If
Γ `ps and ∆ `ps x : A, then:

Γ ∨∆ `ps xJinrΓ;∆K : AJinrΓ;∆K
The base case is given by the preceding paragraph, and the other cases follow from routine
calculation.

These proofs are given in Catt.Wedge.Pasting.

We lastly give a version of the wedge sum construction for variable sets.

Definition 3.2.10. Let Γ and ∆ be two non-empty contexts, and let U ⊆ Var(Γ) and V ⊆
Var(∆) be variable sets. Then define:

U ∨ V = UJinlΓ;∆K ∪ V JinrΓ;∆K
to be a variable set of Γ ∨∆.

3.2.2 Tree contexts
We have now defined suspensions and wedge sums, and shown that both operations preserve
ps-contexts. This allows us to define the context generated by a tree.

98

https://alexarice.github.io/catt-agda/Catt.Wedge.Typing.html
https://alexarice.github.io/catt-agda/Catt.Wedge.Pasting.html

Definition 3.2.11. For a tree T , the context bT c generated from it is defined recursively by:

b[]c = D0 b[T0, . . . , Tn]c =
n∨
i=0

ΣbTic

It is immediate from this definition that bΣ(T)c ≡ Σ(bT c), bS++T c ≡ bSc∨bT c, and that
dim(bT c) = h(T).

We can immediately give some examples of trees and their associated contexts. The context
D0 is defined to be the context associated to [], and so asDn+1 ≡ Σ(Dn), all the disc contexts
can easily be recovered from trees asDn ≡ bΣn([])c. Each treeΣn([]) is linear and has height
n.

Trees can also be drawn graphically as follows: For a tree [T0, . . . , Tn], first recursively draw
the trees Ti and lay these out in a horizontal line. Then a single point is drawn underneath
these subtrees which we call the root of the tree, and a line is and drawn between the root of
the tree and the root of each subtree. An example is given in Figure 3.3.

•

•

• •

• • • •

Figure 3.3: The tree [[[], []], []] and generated context.

The context associated to a tree is clearly a pasting diagram, as the context is built only using
the singleton context, wedge sums, and suspension. In fact, the set of contexts generated by
trees is exactly the set containing the singleton context, and closed under wedge sums and
suspensions. Further, it is proven in the formalisation module Catt.Dyck.FromTree that all
pasting diagrams are generated by some tree, though this will not be needed for any formal
development of our type theories.

We next introduces paths, which can be thought of as the variables in a tree.

Definition 3.2.12. Let T be a tree. Paths p : PathT are non-empty lists of natural numbers
of the form q++[n] such that q indexes a subtree T q of T and 0 ≤ n ≤ len(T q).

For path p : PathT , we obtain a variable of bT c by recursion on p as follows:

• Suppose p = [n]. Let T = [T0, . . . , Tk]. It is clear that bT c has exactly k+2 variables of
dimension 0, corresponding to (inclusion of) the first variable of each context Σ(bTic)
as well as the variable corresponding to the inclusion of snd(Σ(Ti)). We then define
b[n]c to be the nth such variable, indexing from 0.

• Let p = k :: q and T = [T0, . . . , Tk, . . .], where q is a path of Tk. Then by recursion
we have a variable bqc of bTkc. This gives a variable Σ(bqc) of Σ(bTkc) which can be
included into bT c by the appropriate inclusion to get bpc.

We lastly define the set of maximal paths MaxPathT of T to be paths p++[0] such that
T p = []. Such paths correspond to locally maximal variables of bT c.

99

https://alexarice.github.io/catt-agda/Catt.Dyck.FromTree.html

We now turn our attention to substitutions from a tree context σ : bT c → Γ. A substitution
can be viewed as a function from the variables of its source context to terms of the target
context. Therefore, a substitution σ : bT c → Γ acts on variables of bT c. However, we have
seen that the more natural notion of a variable in a tree context is a path. This motivates the
following definition.

Definition 3.2.13. A term-labelling L : T → Γ from a tree T to context Γ is a pair con-
taining a function PathT → TermΓ and a type of Γ. To apply the function component
of a labelling to a path p, we write L(p) or L[x0, x1, . . .] for a path [x0, x1, . . .]. The type
component of the labelling is given by Ty(L).

If T = [T0, . . . , Tn], then there are natural projectionsLi : Ti → Γ given byLi(p) = L(i :: p)
and Ty(L) = L[i]→Ty(L) L[i+ 1] for 0 ≤ i ≤ n.

For labellings to play the role of substitutions, a substitution bLc : bT c →Ty(L) Γ will be de-
fined for each term-labelling L : T → Γ. A natural way to define this substitution is by
induction on the tree T , which motivates the use of extended substitutions. Suppose we start
with a labelling L : [T0, . . . , Tn]→ Γ. To proceed, we will apply the inductive hypothesis to
obtain the substitutions:

bLic : bTic →L[i]→Ty(L)L[i+1] Γ

These substitutions are not regular (non-extended) substitutions, even if L has associated type
⋆, and so corresponds to a regular substitution.

Definition 3.2.14. Let L : T → Γ be a term-labelling. We define the substitution:

bLc : bT c →Ty(L) Γ

by induction on the tree T as 〈Ty(L), L[0]〉 if T = [] and:

↓bL0c ∨ ↓bL1c ∨ · · · ∨ ↓bLnc

if T = [T0, . . . , Tn]. Although it looks like the 0-dimensional terms in the labelling are not
used to generate the substitution, they appear in the types of the labellingsLi, and so appear
in the unrestricted substitutions.

There are many ways of giving a more syntactic presentation of labellings. Given a tree T =
[T0, . . . , Tn], a labelling L : T → Γ can be written as:

t0{L0}t1{L1}t2 · · · tn{Ln}tn+1 : Ty(L)

where each ti is the term L[i] and the sublabellings Li have been recursively put in this syn-
tactic bracketing format (omitting the type). The syntactic presentation contains all the in-
formation of the original labelling, which can be recovered by letting L[i] = ti for each i,
L[i :: p] = Li(p).

As an example, take the tree T = [[[], []], []] from Figure 3.3, and let:

Γ = (x : ⋆), (f : x→ x), (α : f ∗ f → f)

Then we can define the labelling L : T → Γ by:

L = x
{
f ∗ f{α}f{id(f)}f

}
x{f}x : ⋆

100

which sends the (maximal) paths [0, 0, 0] to α, [0, 1, 0] to id(f), and [1, 0] to f , and has associ-
ated substitution:

bLc = 〈x, x, f ∗ f, f, α, f, id(f), x, f〉

The curly brackets notation for labellings is used instead of a typical round bracket notation
to avoid clashes with notations that already use round brackets, such as id(f).

We finish this section by examining a boundary operation for trees. We have already seen that
for every ps-context Γ and n ∈ N, there are the boundary variable sets:

∂−n (Γ) ∂+n (Γ)

Since bT c is a ps-context for any tree T , we immediately obtain such boundary variable sets
for bT c. However, by recalling the definitions for the wedge sum of variable sets given in Sec-
tion 3.2.1 and the suspension of a variable set given in Section 2.3.2, a more natural definition
can be given.

Definition 3.2.15. For any tree T : Tree, dimension n ∈ N, and ϵ ∈ {−,+}, we define the
boundary set:

∂ϵn(T)

by induction on n and T . If n = 0, then we define:

∂−0 (T) = FV(fst(bT c)) ∂+0 (T) = FV(snd(bT c))

Now suppose n is not 0. If the tree T is the singleton tree, then ∂ϵn(T) = Var(bT c). Now
suppose that T = [T0, . . . , Tn]. We then define:

∂ϵn(T) = ∂ϵn−1(T0) ∨ · · · ∨ ∂ϵn−1(Tn)

with the boundary sets ∂ϵn(Ti) obtained by inductive hypothesis.

In the formalisation module Catt.Tree.Support, we prove that the boundary sets ∂ϵn(T), the
tree boundary, and ∂ϵn(bT c), the ps-context boundary, coincide. Therefore:

(bSc, ∂−n (T), ∂+n (T)) ∈ Std

for each n ≥ h(S)− 1.

3.3 Structured syntax
We now introduce a new class of syntax named structured syntax. Terms over tree contexts
are commonly built using several of the standard constructions we have seen so far, such as
paths, labellings, suspensions, and inclusions. By recording which of these constructions was
used in the formation of a term, these terms can compute more usefully, which we will exploit
to prove more involved lemmas about insertion in Section 3.4. Structured syntax will be our
variation on the base syntax of Catt which records these constructions.

The key problem with the base syntax for Catt is that term-labellings are difficult to compose.
We have so far considered term-labellings of the form L : T → Γ, where Γ is any arbitrary
context, but there is no reason a labelling couldn’t be of the form M : S → bT c for trees S

101

https://alexarice.github.io/catt-agda/Catt.Tree.Support.html

and T . We would then hope to be able to compose these labellings to get a labelling of the
form:

M • L : S → Γ

Such a labelling would need to send a path p : PathS to a term of Γ. The only reasonable way
forward is to applyM to p to get a term of bT c, and then apply bLc to this term to get a term
of Γ. Unfortunately, for an arbitrary term t : Term⌊T ⌋ and labelling L : T → Γ, the term:

tJbLcK
does not have nice computational properties. We examine two examples:

• Suppose t was of the form bpc for some path p. We then have:

bpcJbLcK ≡ L(p)

and would hope that this syntactic equality would fall out immediately, and that the
left-hand side would reduce to the right-hand side in the formalisation. This is not the
case however, and proving that such a syntactic equality holds is non-trivial.

• Suppose t ≡ Σ(s) and L = a{L1}b : A. Similar to the above case we would hope that
the syntactic equality:

Σ(s)Jba{L1}b : AcK ≡ sJbL1cK
holds “on the nose”. This however is not the case.

Structured terms alleviate these problems by recording that such a term t was generated from
a path or generated using suspension. This allows the application of a labelling to a structured
term to use this information, for example letting the two syntactic equalities above to hold by
definition. If a labelling is the “correct” notion of substitution from a tree, then a structured
term is the “correct” notion of term in a tree.

Definition 3.3.1. LetU be amember ofCtx]Tree, either some contextΓ or some tree T . We
then define the structured syntax classes STermU of structured terms, STypeU of structured
types, and (STerm-)labellings S → U for some tree S. The syntax classes for structured
terms and types are generated by the following rules:

p : PathT
SPath(p) : STermT

s : STermTi 0 ≤ i ≤ n

Inci(s) : STerm[T0,...,Tn]

S : Tree A : STypeS L : S → U
SCoh(S ;A)[L] : STermU

t : TermΓ

SOther(t) : STermΓ

⋆ : STypeU

s : STermU A : STypeU t : STermU

s→A t : STypeU

Labellings L : S → U are defined as pairs of a function PathS → STermU and structured
type, similarly to term-labellings in Section 3.2.2. We note that the syntax for structured
types is shared with the syntax for Catt types, and will be careful to make it clear which
syntax we are using when necessary.

102

Each piece of structured syntax can be converted back into the base syntax of Catt, using
many of the constructions already introduced.

Definition 3.3.2. Suppose U : Ctx] Tree. Define bUc to be Γ if U = Γ for some context Γ
or bT c if U = T for some tree T . Now, for a structured term s : STermU, a structured type
A : STypeU, or a labelling L : S → U, we define:

bsc : Term⌊U⌋ bAc : Type⌊U⌋ bLc : bSc →⌊Ty(L)⌋ bUc

by the equations:

bSPath(p)c = bpc
bInci(s)c = Σ(bsc)JinciK

bSCoh(S ;A)[L]c = Coh(⌊S⌋ ; ⌊A⌋)[id⌊S⌋]JbLcK
bSOther(t)c = t

b⋆c = ⋆

bs→A tc = bsc →⌊A⌋ btc

defining inci be the unique (by Proposition 3.2.7) inclusion:

inci : ΣbTic → bT c

Further define bLc similarly to term labellings except bLc = 〈bTy(L)c, bL[0]c〉 for labellings
L : [] → U from the singleton tree. We refer to bac, bAc and bLc as the term, type, or
substitution generated by a,A, or L.

For any tree T , there is an identity labelling idT given by:

idT (p) = SPath(p) Ty(idT) = ⋆

The function id-label-to-sub in the formalisation (see Catt.Tree.Structured.Properties) shows
that:

bidT c = id⌊T ⌋

The main motivation for introducing structured syntax was to be able to define a composition
of labellings, which we do now by defining the application of a labelling to a structured term,
structured type, or another labelling.

Definition 3.3.3. Let L : T → U be a labelling (with U : Ctx] Tree). We define the
application of L to a structured term s : STermT , a structured type A : STypeT , and a
labellingM : S → T to give:

sJLK : STermU AJLK : STypeU M • L : S → U

103

https://alexarice.github.io/catt-agda/Catt.Tree.Structured.Properties.html#id-label-to-sub
https://alexarice.github.io/catt-agda/Catt.Tree.Structured.Properties.html

These definitions are given by mutual recursion:

SPath(p)JLK = L(p)

Inci(s)JLK = sJLiK
SCoh(S ;A)[M]JLK = SCoh(S ;A)[M • L]

SOther(t)JLK = tJbLcK
⋆JLK = B

(s→A t)JLK = sJLK→AJLK tJLK
(M • L)(p) =M(p)JLK
Ty(M • L) = Ty(M)JLK

It can easily be seen that these definitions satisfy the computational properties given at the
start of the section.

The main theorem of this section is that the application of a labelling to a structured term is
compatible with the map from structured syntax to Catt syntax.

Theorem 3.3.4. For any labelling L : T → U and structured term s : STermT , structured
type A : STypeT , or labellingM : S → T , we have:

bsJLKc ≡ bscJbLcK bAJLKc ≡ bAcJbLcK bM • Lc ≡ bMc • bLc

Proof. We proceed by proving all statements by mutual induction. Suppose s : STermT is a
structured term. We split on the form of s:

• Suppose s is of the form SCoh(S ;A)[M]. Then sJLK is SCoh(S ;A)[M • L] and so the
required statement follows from the inductive hypothesis for labellings.

• Suppose s is of the form SOther(t). Then bsJLKc ≡ bSOther(tJbLcK)c ≡ tJbLcK ≡
bscJbLcK.

• Suppose T = [T0, . . . , Tn] and s is of the form Inci(t). Then:

bInci(t)cJbLcK ≡ Σ(t)JinciKJ↓bL0c ∨ · · · ∨ ↓bLncK
≡ Σ(t)Jinci •(↓bL0c ∨ · · · ∨ ↓bLnc)K
≡ Σ(t)J↓bLicK by Lemma 3.2.6
≡ btcJbLicK
≡ btJLiKc by inductive hypothesis
≡ bInci(t)JLKc

• Suppose s is of the form SPath(p). Then if bpc is not a 0-dimensional variable,
then an argument similar to the preceding case can be made. If instead bpc is of
the form [k] and T = [T0, . . . , Tn] then first suppose that k < n + 1 such that

104

b[k]c ≡ fst(bTkc)JinckK. Then:

b[k]cbLc ≡ fst(bTkc)JinckKJb↓bL0c ∨ · · · ∨ ↓bLnccK
≡ fst(bTkc)J↓bLkcK
= bL[k]c

where the last equality follows from the labelling Lk having type component
Ty(Lk) ≡ bL[k]c →B bL[k + 1]c. The case where k = n + 1 is similar to above
using snd(Tn) instead of fst(Tk) (as there is no tree Tk in this case).

The case for structured types follows by a simple induction using the case for terms. We
now consider the case for a labelM : S → T . Suppose S = [S0, . . . , Sn]. Then:

bMc • bLc ≡

(∨
i

↓bMic

)
• bLc

≡
∨
i

↓bMic • bLc by Lemma 3.2.6

≡
∨
i

↓ (bMic • bLc)

≡
∨
i

↓bMi • Lc by inductive hypothesis

≡ bM • Lc

with the last line following from (M•L)i andMi•L being the same labelling. This concludes
all cases.

Structured syntax is only used as computational aid for reasoning about the base syntax of
Catt, and therefore the desired notion of “syntactic” equality of structured syntax is syntactic
equality of the underlying Catt terms, that is we say s ≡ t for structured terms s and t exactly
when bsc ≡ btc. On labellings L,M : T → U we can instead provide the equality:

L ≡M ⇐⇒ Ty(L) ≡ Ty(M) ∧ ∀(p : PathT). L(p) ≡M(p)

and by observing the proof of Theorem 3.3.4, we see that this equality implies equality of the
generated substitutions.

It is therefore possible to derive many properties for this equality of structured terms simply
by reducing all constructions used to the corresponding Catt constructions, and using the
corresponding result for the syntax of Catt.

Proposition 3.3.5. Composition of labellings is associative and has a left and right unit given
by the identity labelling.

Proof. Follows immediately from Theorem 3.3.4, the identity labelling generating the iden-
tity substitution, and the corresponding results for Catt.

Using this technique, every syntactic result about Catt can be transported to structured syn-
tax. Further, it is easy to prove that the equality relation is preserved by each constructor, for
example if L ≡M and A ≡ B, then SCoh(S ;A)[L] ≡ SCoh(A ;B)[M].

105

To extend this, we redefine some constructions we have seen for Catt in the previous sections,
this time for structured terms.

Definition 3.3.6. We define the suspension for a structured term a : STermU, structured
type A : STermU, and restricted substitution for a labelling L : T → U, giving structured
term Σ(a) : STermΣ(U), structured type Σ(A) : STermΣ(U), and labelling Σ′(L) : T → Σ(U).
These are all defined by mutual induction as follows:

Σ(a) ≡ Inc0(a) if U is a tree
Σ(SCoh(S ;A)[M]) ≡ SCoh(S ;A)[Σ

′(M)] if U is a context
Σ(SOther(t)) ≡ SOther(Σ(t))

Σ(⋆) = N →⋆ S if U is a context
Σ(⋆) = SPath[0]→⋆ SPath[1] otherwise

Σ(s→A t) = Σ(s)→Σ(A) Σ(t)

Σ′(L)(p) = Σ(L(p))

Ty(Σ′(L)) = Σ(Ty(L))

We further define an unrestriction operation that takes a labelling of the formM : T → U
with Ty(M) ≡ s→A t and produces a labelling

↓M : Σ(T)→ U ≡ s{M}t : A

This can be used to define the full suspension of a labelling as with Catt substitutions by
defining Σ(L) to be ↓Σ′(L).

A simple case analysis demonstrates that these constructions commute with b_c. They there-
fore inherit the properties of the suspension on Catt terms, types, and substitutions. We lastly
recover wedge sums for structured syntax.

Definition 3.3.7. We have seen that the wedge sum of trees S and T is given by S++T .
Letting S = [S0, . . . , Sm] and T = [T0, . . . , Tn], we further define inclusion labellings:

inlS;T : S → S++T inrS;T : T → S++T

by the equations:

inlS;T ([k]) ≡ SPath[k] inlS;T (k :: p) ≡ SPath(k :: p) Ty(inlS;T) ≡ ⋆

inrS;T ([k]) ≡ SPath[m+ k] inrS;T (k :: p) ≡ SPath(m+ k :: p) Ty(inrS;T) ≡ ⋆

and finally, we suppose L : S → U andM : T → U are labellings of the form:

L ≡ s0{L0}s1 · · · sn{Ln}t0 : A M ≡ t0{M0}t1 · · · tn{Mn}tn+1 : A

and define their concatenation to be the labelling:

L++M ≡ s0{L0}s1 · · · sn{Ln}t0{M0}t1 · · · tn{Mn}tn+1 : A

where L++M : S++T → U.

106

Many properties of these constructions among others are given in the formalisation module
Catt.Tree.Structured.Construct.Properties. In particular, the diagrammatic notation for substi-
tutions between wedge sums can be repurposed to define labellings, which will be used to
define certain labellings in Section 3.4.

It will be useful to be able to interpret all Catt syntax as structured syntax. For terms such a
mapping is trivially given by the SOther constructor. For a type A, a structured type dAe can
be formed by a simple induction, applying the SOther constructor to each term in the type.
For substitutions, we give the following definition.

Definition 3.3.8. Let σ : bSc →A Γ be a substitution. We then define the labelling:

dσe : S → Γ

by dσe(p) = SOther(bpcJσK) and Ty(dσe) = dAe.

This construction is an inverse to taking generating a substitution from a labelling.

Proposition 3.3.9. Let σ : bSc →A Γ be a substitution. Then bdσec ≡ σ. Further, for any
labelling L : S → Γ, dbLce ≡ L.

Proof. We note that every variable of bSc is given by bpc for some path p. We then have the
equality:

bpcJbdσecK ≡ bpJdσeKc ≡ bSOther(bpcJσK)c ≡ bpcJσK
and so σ and bdσec have the same action on each variable and so are equal.

Letting L : S → Γ be a labelling. Then for any path p:

dbLce(p) ≡ SOther(bpcJbLcK) ≡ SOther(bL(p)c)

and so bdbLce(p)c ≡ bL(p)c. Therefore, L ≡ dbLce by definition.

3.3.1 Typing and equality
Similarly to the definition of syntactic equality for structured syntax, we also want the equality
rules for structured terms and structured types to be inherited from the equality relations on
their generated terms, and so define:

U ` s = t ⇐⇒ bUc ` bsc = btc U ` A = B ⇐⇒ bUc ` bAc = bBc

For labellings, (definitional) equality can be defined similarly to the syntactic equality rela-
tion:

U ` L =M ⇐⇒ U ` Ty(L) = Ty(M) ∧ ∀(p : PathT). U ` L(p) =M(p)

Using Lemma 3.2.8, it can be proven by a simple induction that equality of labellings (along
with equality of their associated types) induces equality of the generated substitutions.

We also want the typing rules for s : STermU and A : STypeU to be inherited from the typing
rules for bsc and bAc. We re-use the notation for each typing judgement. For labellings, we
introduce the following more natural typing judgement:

107

https://alexarice.github.io/catt-agda/Catt.Tree.Structured.Construct.Properties.html

Definition 3.3.10. For a labelling L : T → U, where U : Ctx] Tree, we define the judge-
ment:

U ` L : T

to mean that the labelling L is well-formed. This judgement is generated by the following
rule:

U ` L[0] : Ty(L) · · · U ` L[n+ 1] : Ty(L) U ` L0 : T0 · · · U ` Ln : Tn

U ` L : [T0, . . . , Tn]

Paths p can be equipped with a canonical structured type, Ty(p), as follows:

• For paths [k], Ty([k]) = ⋆,

• For paths k :: p where p is a path, the type Ty(k :: p) is obtained by taking the type
Ty(p), applying Inck to each term, and replacing the ⋆ type at its base by the type
SPath[k]→⋆ SPath[k + 1].

This can be used to prove that the identity labelling is well-formed.

Proposition 3.3.11. Let S be a tree. Then S ` idS : S.

Proof. Let x be a list that indexes a subtree ofS, and define the labelling subtree(x) : Sx → x
by Ty(subtree(x)) = Ty(x++[0]) and subtree(x)(p) = SPath(x++ p).

We then prove the more general result that S ` subtree(x) : Sx for each x, with the desired
result following from the case x = []. If Sx = [], then the typing judgement follows from
S ` Sx[0] : Ty(Sx[0]).

If Sx = [T0, . . . , Tn] then we must show that S ` Sx[k] : Ty(Sx[0]), which follows from
the observation that Ty(Sx[0]) ≡ Ty(Sx[i]) for any i as the definition does not use the last
element of the path. We are also required to show that S ` Sxi : Ti, but Ti ≡ Sx++[i] and
Sxi ≡ Sx++[i], and so this follows from inductive hypothesis.

From this typing judgement for labellings, one can obtain a derivation of the typing judgement
for the generated substitution.

Proposition 3.3.12. Let L : T → U, and suppose U ` L : T and U ` Ty(L). Then:

bUc ` bLc : bT c

Proof. We induct on the tree T , splitting into cases on whether it is empty. If it is, then by
case analysis on the judgement for label typing we get:

U ` L[0] : Ty(L)

108

Then, bLc ≡ 〈bAc, bL[0]c〉, and so the following derivation can be obtained:

U ` A
bUc ` bAc

bUc ` 〈bAc〉 : ∅
U ` L[0] : A

bUc ` bL[0]c : bAc
bUc ` 〈bAc, bL[0]c〉 : b[]c

Suppose instead that T = [T0, . . . , Tn], such that:

bLc ≡ ↓bL0c ∨ · · · ∨ ↓bLnc

From U ` L : T , we obtain U ` Li : Ti for each i ∈ {0, . . . , n}. We further obtain
U ` L[k] : Ty(L) for 0 ≤ k ≤ n+ 1 and so:

Ty(Li) ≡ L[i]→Ty(L) L[i+ 1]

is well-formed and so by inductive hypothesis we have bUc ` bLic : bTic. We have for each
i that bTy(L)c is not the type ⋆ and so the unrestriction ↓bLic is well-formed. Furthermore,
by construction of the unrestriction we have:

fst(bTic)JbLicK ≡ bL[i]c snd(bTic)JbLicK ≡ bL[i+ 1]c

and so by Lemma 3.2.8, the wedge sums are well-formed, completing the proof.

It can be shown that the reverse implication also holds: if bUc ` bLc : bT c then U ` L : T .
This follows as a corollary from the following proposition.

Proposition 3.3.13. Let σ : bT c →A Γ be a substitution with Γ ` σ : bSc. Then for any
L : S → T we have:

T ` L : S =⇒ Γ ` L • dσe : S

and hence Γ ` dσe : T follows from letting L be the identity labelling.

Proof. Let S = [S0, . . . , Sn] (where we allow this list to be empty). By the definition of the
typing for a labelling, it suffices to show that for each 0 ≤ i ≤ n and 0 ≤ k ≤ n+ 1 that:

S ` L[k] • dσe : Ty(L)JdσeK S ` (L • dσe)i : Si

The second typing judgement follows directly from inductive hypothesis, as (L • dσe)i ≡
Li • dσe. By definition of typing for structured terms, the first judgement requires us to
prove that:

bSc ` bL[k] • dσec : bTy(L)JdσeKc
which is equivalent to:

bSc ` bL[k]cJσK : bTy(L)cJσK
and so follows from typing being preserved by substitution.

By these results, many of the properties enjoyed by the typing judgements in CattR with a

109

tame rule setR also apply to the typing judgements for structured terms.

The module Catt.Tree.Structured.Typing.Properties also introduces many functions for con-
structing the typing judgements for structured syntax. One such function is TySCoh, which
represents the admissibility of the following rule:

S ` s→A t U ` L : S U ` Ty(L) (bSc, Supp(s), Supp(t)) ∈ O
U ` SCoh(S ; s→At)[L]

(3.3.14)

In keeping with the theme of this section, one could define Supp(s) as Supp(bsc) for a struc-
tured term s : STermU. However, we choose not to do this, instead giving a definition of sup-
port for structured syntax that leverages the extra information available in the syntax.

Definition 3.3.15. For a path p : PathT , a structured term s : STermU, a structured type
A : STypeU, and a labellingL : S → U, we define their supports Supp(p), Supp(s), Supp(A),
and Supp(L) by mutual recursion:

Supp([n]) = {b[0]c}
Supp(k :: p) = Σ(Supp(p))JinckK where T = [T1, . . . , Tn]

Supp(SPath(p)) = Supp(p)
Supp(Inci(s)) = Σ(Supp(s))JinciK where T = [T1, . . . , Tn]

Supp(SCoh(S ;A)[L]) = Supp(L) ∪ Supp(Ty(L))
Supp(SOther(t)) = Supp(t)

Supp(⋆) = ∅
Supp(s→A t) = Supp(s) ∪ Supp(A) ∪ Supp(t)

Supp(L) =
n+1⋃
i=0

Supp(L[i]) ∪
n⋃
i=0

Supp(Li)

We note that each of these support definitions is naturally downwards closed, and there is no
need to apply a downwards closure operator as was necessary for the support of Catt syntax.
By some routine calculations given in the formalisation module Catt.Tree.Structured.Support,
these support definitions are equivalent to taking the support of the generated piece of syntax.
More precisely, the equations:

Supp(p) = Supp(bpc) Supp(s) = Supp(bsc) Supp(A) = Supp(bAc)

Supp(L) ∪ Supp(Ty(L)) = Supp(bLc)

for path p, structured term s, structured type A, and labelling L.

By using this notion of support, we are able to avoid a lot of “boilerplate” proof. The above
definition of support more closely resembles the format of structured terms, and without this
definition, most proofs concerning the support of a structured termwould begin by simplifying
a variable set similar to Supp(bsc) to one more similar to Supp(s). Here, we instead give this
equivalence proof once.

We end this section by giving alternative equality relations for labellings, which encapsulate
the idea that a substitution is fully determined by where it sends locally maximal variables.

110

https://alexarice.github.io/catt-agda/Catt.Tree.Structured.Typing.Properties.html
https://alexarice.github.io/catt-agda/Catt.Tree.Structured.Typing.Properties.html#TySCoh
https://alexarice.github.io/catt-agda/Catt.Tree.Structured.Support.html

These equalities are defined as follows for labellings L : T → U andM : T → U:

L ≡max M ⇐⇒ ∀(p : MaxPathT). L(p) ≡M(p)

U ` L =max M ⇐⇒ ∀(p : MaxPathT). U ` L(p) =M(p)

and define two labels to be equal exactly when their action on maximal paths is equal. The
following theorem gives conditions for when the standard equality relation can be recovered
from these.

Theorem 3.3.16. Let L : S → U andM : S → U be labellings. Then the following rules are
admissible:

U ` L : S U `M : S L ≡max M

U ` L =M

U ` L : S U `M : S L ≡max M

U ` Ty(L) = Ty(M)

If the equality rule setR satisfies the preservation and support conditions, then the rules above
are still admissible with U ` L =max M replacing the syntactic equalities.

Proof. We prove the results for the syntactic equality, with the results for the definitional
equality following similarly, but using the preservation property instead of uniqueness of
typing. We proceed by induction on the tree S, proving the admissibility of both rules
simultaneously.

First suppose that S = []. Then the path [0] : Path[] is maximal and so U ` L =M follows
by the reflexivity of equality. The second rule follows from the uniqueness of typing, as we
get U ` L[0] : Ty(L) and U `M [0] : Ty(M) from the premises.

Now suppose that S = [S0, . . . , Sn]. By inductive hypothesis, the following judgements
hold for each i ∈ {0, . . . , n}:

U ` Li =Mi U ` L[i]→Ty(L) L[i+ 1] =M [i]→Ty(M) M [i+ 1]

From the equalities on types, we immediately get thatU ` Ty(L) = Ty(M) as is required for
the admissibility of the second rule, and also get thatU ` L[i] =M [i] for each 0 ≤ i ≤ n+1,
which along with equality on (sub)labellings above is sufficient to prove that:

U ` L =M

which witnesses the admissibility of the first rule.

3.3.2 Standard coherences
In Chapter 1, we gave a preliminary definition of standard coherences, a definition of a canon-
ical coherence over a given pasting diagram. This diagram relies on inclusion substitutions
from the boundary of a pasting diagram into its source and target variables, whose definition
for ps-contexts can be unpleasant to work with.

In contrast, the n-boundary of a tree and its associated source and target inclusions have a
natural definition by induction on the tree, where the source and target inclusions are given
by labellings. We give this definition below.

111

Definition 3.3.17. Given dimension n ∈ N and T : Tree, we define the n-boundary of the
tree ∂n(T) : Tree by induction on n and T :

∂0(T) = [] ∂n+1([T0, . . . , Tn]) = [∂n(T0), . . . , ∂n(Tn)]

We further define path-to-path functions Iϵn(T) : ∂n(T)→ T for ϵ ∈ {−,+} by induction:

I−0 (T)([0]) = [0]

I+0 ([T0, . . . , Tm])([0]) = [m+ 1]

Iϵn+1([T0, . . . , Tm])([k]) = [k]

Iϵn+1([T0, . . . , Tm])(k :: p) = [k :: Iϵn+1(Tk)(p)]

and then can define the source inclusion labelling δ+n (T) : ∂n(T) → T and target inclusion
labelling δ+n (T) : ∂n(T)→ T by:

δϵn(T)(p) = SPath(Iϵn(T)(p)) Ty(δϵn(T)) = ⋆

for each n and ϵ ∈ {−,+}.

In the module Catt.Tree.Boundary.Typing, it is proven that:

T ` δϵn(T) : ∂n(T)

for all trees T , n ∈ N, and ϵ ∈ {−,+}.

In Chapter 1, the source and target variable sets were defined to be support of the source and
target inclusions. This can now be justified by the following lemma.

Lemma 3.3.18. For a dimension n ∈ N, T : Tree, and ϵ ∈ {−,+} we have:

Supp(δϵn(T)) = ∂ϵn(T)

Proof. The proof is given by the function tree-inc-label-supp in the formalisation module
Catt.Tree.Boundary.Support and proceeds by induction on n and T .

This definition also allows simple inductive proofs that the boundary inclusions satisfy the
globularity conditions, which we state in the following proposition. These proofs are given in
the formalisation module Catt.Tree.Boundary.Properties.

Proposition 3.3.19. Let n ≤ m and let T be a tree. Then:

∂n(∂m(T)) ≡ ∂n(T)

Further, for ϵ, ω ∈ {−,+} we have:

δϵn(∂m(T)) • δωm(T) ≡ δϵn(T)

If instead n ≥ h(T), then ∂n(T) ≡ T and δϵn(T) ≡ idT .

112

https://alexarice.github.io/catt-agda/Catt.Tree.Boundary.Typing.html
https://alexarice.github.io/catt-agda/Catt.Tree.Boundary.Support.html#tree-inc-label-supp
https://alexarice.github.io/catt-agda/Catt.Tree.Boundary.Support.html
https://alexarice.github.io/catt-agda/Catt.Tree.Boundary.Properties.html

Further, these constructions commutewith suspension: The equalitiesΣ(∂n(T)) ≡ ∂n+1(Σ(T))
and Σ(δϵn(T)) ≡ δϵn+1(Σ(T)) hold by definition.

We now recall the definitions of standard type, standard coherence, and standard term for a
tree T , which are given by mutual induction:

• The standard type, UnT , is an n-dimensional type where each component of the type
is given by the standard term over the appropriate boundary of the tree T , and then
included back into T by applying the inclusion labelling.

• The standard coherence, CnT , is the canonical dimension n coherence term over a tree T .
It is formed by a single coherence constructor over T with type given by the standard
type, UnT .

• The standard term, T nT , is a variation on the standard coherencewhich does not introduce
unnecessary unary composites. If T is linear (and so represents a disc context), and
n = h(T), then T nT is simply given by the unique maximal path in T . Otherwise, it is
given by the standard coherence CnT .

At the end of Chapter 1 it was stated that Σ(T nT) ≡ T n+1
Σ(T). Using this, the standard term can

instead be defined by letting T 0
[] be SPath([0]), T

n+1
Σ(T) beΣ(T nT), and T nT be CnT otherwise, which

avoids the case split on the linearity of T . We now define all three constructions formally using
structured syntax.

Definition 3.3.20. We define the n-dimensional standard type over a tree T as a structured
type UnT : STypeT , and the n-dimensional standard coherence and standard term over a tree
T as structured terms CnT , T nT : STermT by mutual induction:

U0
T = ⋆

Un+1
T = T n∂n(T)Jδ−n+1(T)K→Un

T
T n∂n(T)Jδ+n+1(T)K

CnT = SCoh(T ;Un
T)[idT]

T nT =


SPath([0]) if T = [] and n = 0

Inc0(T n−1
T0

) if n 6= 0 and T = [T0]

CnT otherwise

when n = h(T), we call the standard coherence CnT the standard composite of T .

We can immediately show that these standard construct commute with suspension.

Lemma 3.3.21. For tree T and n ∈ N, Σ(UnT) ≡ Un+1
Σ(T) and Σ(CnT) ≡ C

n+1
Σ(T).

Proof. We first consider the standard type. The case for n = 0 follows immediately, so we

113

let n > 0. We then get for ϵ ∈ {−,+}:

Σ
(
T n−1
∂n−1(T)

Jδϵn−1(T)K) ≡ Σ(T n−1
∂n−1(T)

)JΣ(δϵn−1(T))K by functoriality of suspension

≡ T nΣ(∂n−1(T))
JΣ(δϵn−1(T))K

≡ T n∂n(Σ(T))Jδϵn(Σ(T))K
By inductive hypothesis Σ(Un−1

T) ≡ UnΣ(T) and so

Σ(UnT) ≡ Σ
(
T n−1
∂n−1(T)

Jδ−n−1(T)K)→Σ(Un−1
T) Σ

(
T n−1
∂n−1(T)

Jδ+n−1(T)K)
≡ T n∂n(Σ(T))Jδ−n (Σ(T))K→Un

Σ(T)
T n∂n(Σ(T))Jδ+n (Σ(T))K

≡ Un+1
Σ(T)

as required.

For the standard coherence we have:

Σ(CnT) ≡ SCoh(Σ(T) ; Σ(Un
T))[Σ(idT)] ≡ SCoh(Σ(T) ;Un+1

Σ(T)
)[idΣ(T)] ≡ Cn+1

Σ(T)

following from the case for types.

To prove that the standard constructions are well-formed, we give a couple of lemmas. The
first concerns the support of the standard term and standard coherence.

Lemma 3.3.22. For a tree T , dimension n ∈ N, and ϵ ∈ {−,+}, we have:

Supp
(
T n∂n(T)Jδϵn(T)K) = ∂ϵn(T) Supp

(
Cn∂n(T)Jδϵn(T)K) = ∂ϵn(T)

Proof. The case for coherences follows from the definition and the equality
Supp(δϵn(T)) = ∂ϵn(T)

For the standard term, it suffices to consider cases where the standard term and standard
coherence are not equal. If n = 0, then ∂n(T) ≡ [], and it suffices to prove that Supp([m]) =
FV(b[m]c), but this is immediate because Supp([m]) = Supp(b[m]c) and b[m]c is a variable
of type ⋆ so its support is equal to its free variables.

We therefore consider the case where n > 0 and len(∂n(T)) = 1. The only case where this
happens is if len(T) = 1 too, so assume T ≡ [T0]

Supp
(
T n∂n(T)Jδϵn(T)K) = Supp

(
T nΣ(∂n−1(T0))

JΣ (δϵn−1(T0)
)K)

= Supp
(
Σ
(
T n−1
∂n−1(T0)

) JΣ (δϵn−1(T0)
)K)

= Supp
(
Σ
(
T n−1
∂n−1(T0)

Jδϵn−1(T0)K))
= Σ

(
Supp

(
T n−1
∂n−1(T0)

Jδϵn−1(T0)K))
= Σ

(
∂ϵn−1(T0)

)
= ∂ϵn(T)

114

as required.

The second lemma gives a globularity condition for the standard type.

Lemma 3.3.23. Let T be a tree. Then:

UnT ≡ Un∂m(T)Jδϵm(T)K
for n ≤ m and ϵ ∈ {−,+}.

Proof. We induct on n. If n = 0 then both sides of the equation are the type ⋆. We therefore
consider the case for n+ 1 and so we must prove:

Un+1
T ≡ T n∂n(T)Jδ−n (T)K→Uk

T
T n∂n(T)Jδ+n (T)K

≡ T n∂n(∂m(T))Jδ−n (∂m(T))KJδϵm(T)K→Un
∂m(T)

Jδϵm(T)K T n∂n(∂m(T))Jδ+n (∂m(T))KJδϵm(T)K
≡ Un+1

∂m(T)Jδϵm(T)K
The equality UnT ≡ Un∂m(T)Jδϵm(T)K follows by inductive hypothesis. Further, for ω ∈ {−,+}
we have by Proposition 3.3.19:

T n∂n(∂m(T))Jδωn (∂m(T))KJδϵn(T)K ≡ T n∂n(∂m(T))Jδωn (∂m(T)) • δϵm(T)K
≡ T n∂n(T)Jδ−n (T)K

which completes the proof.

We can now state and prove the typing properties of standard constructions.

Proposition 3.3.24. Suppose that O contains the standard operations. Then the following
rules are admissible:

T : Tree n ∈ N
T ` UnT

T : Tree n 6= 0 n ≥ h(T)
T ` CnT : UnT

T : Tree n ≥ h(T)
T ` T nT : UnT

Proof. We prove that all three rules are admissible by mutual induction. First consider the
cases for types. The case when n = 0 is trivial, so we consider the case for n+ 1. We need
to show that:

T ` T n∂n(T)Jδ−n (T)K→UT
n
T n∂n(T)Jδ+n (T)K

The inductive hypothesis on types gives that T ` UTn and so we must show that:

T ` T n∂n(T)Jδϵn(T)K : UTn
for ϵ ∈ {−,+}. By inductive hypothesis for terms, we have ∂n(T) ` T n∂n(T) : U

n
∂n(T)

as we
have h(∂n(T)) ≤ n. As T ` δϵn(T) : ∂n(T) we have that:

T ` T n∂n(T)Jδϵn(T)K : Un∂n(T)Jδϵn(T)K
and so by Lemma 3.3.23, this case is complete.

115

For the standard coherence, we apply Rule 3.3.14, using the inductive hypothesis for types.
To show that (T, src(UnT), tgt(UnT)) ∈ O, we apply Lemma 3.3.22.

For the standard term, like previous proofs it is sufficient to consider the cases where it
is defined differently to the standard coherence. For n = 0 we must have T = [] by the
condition on the height of T . Hence, T nT ≡ [0] which is well-formed as has type ⋆ ≡ UnT as
required.

We now consider T n+1
Σ(T) ≡ Σ(T nT). By inductive hypothesis on dimension, T ` T nT : UnT and

so we immediately have that:
Σ(T) ` T n+1

Σ(T) : Σ(U
n
T)

and so the proof is complete by Lemma 3.3.22.

The equality relations we have seen so far make heavy use of disc contexts and associated
terms and types. We therefore pause to consider the form of these as structured syntax and to
relate them to the standard constructions presented in this section.

All disc contexts are the result of applying iterated suspensions to the singleton context, and
so it follows that disc contexts correspond exactly to linear trees. By an abuse of notation we
write:

Dn = Σn([])

As we further have that Σ(Un) ≡ Un+1 for the sphere type Un, it can be proved for a simple
induction that:

Un ≡ bUnDnc
As we have already noted, the maximal dimension term dn : TermDn is given by bT nDnc. It
is also equal to the unique maximal path, pn = Σn[0], which is the list containing n + 1
zeros.

The only missing construction is an equivalent for the substitution from a disc context. From
a structured term s : STermU of type A : STypeU, there should be a labelling {A, s} from
Dn to U. This however proves more challenging to define as trees and types have opposite
inductive structure. For a labelling, it is natural to specify the lower-dimensional terms first
and fill in higher-dimensional terms by induction, though when deconstructing a type, we first
receive the highest dimensional terms, only receiving the lower-dimensional terms by further
deconstructing the type.

To define the labelling {A, t}, we define the extension of labelling from a linear tree, which
allows us to add higher-dimensional terms to the labelling, and use this to define the labelling
from a linear tree.

Definition 3.3.25. Let L : Dn → U be a labelling from a linear tree, and let s, t : STermU
be structured terms. The extension of L by s and t, ext(L, s, t), is defined inductively on n
by:

Ty(ext(L, s, t)) = Ty(L) ext(L, s, t) =
{
L[0] {t} s if n = 0

L[0] {ext(L0, s, t)}L[1] otherwise

We then define the labelling {A, t} by induction on A:

{⋆, t} = (p 7→ t) {s→A t, u} = ext({A, s}, t, u) Ty({A, t}) = ⋆

116

These constructions all satisfy the expected typing judgements. More precisely the following
inference rules are admissible:

U ` L : Dn U ` s : UnDnJLK U ` t : pnJLK→Un
DnJLK s

U ` ext(L, s, t) : Dn+1

U ` A U ` t : A
U ` {A, t} : Ddim(A)

The admissibility of the above rules is routine to verify.

Using these constructions, we can recover structured term definitions of the unary composite
of a (structured) term t of type A of dimension n as CnDnJ{A, t}K and can define the identity
of the same term t as Cn+1

Dn J{A, t}K. Therefore, the rules for disc removal and endo-coherence
removal can be rephrased in terms of structured syntax to get the following rules:

U : Ctx] Tree U ` A U ` t : A dim(A) = n > 0

U ` CnDnJ{A, t}K = t
dR’

U : Ctx] Tree T : Tree L : S →⋆ U n = dim(A)
T ` A T ` s : A Supp(s) = Var(T) U ` L : T

U ` SCoh(T ; s→As)[L] = Cn+1
Dn J{A, s} • LK ecR’

which are admissible if the equality rule set R has disc removal or endo-coherence removal
respectively.

We end this section with two further results that can be proven in the presence of disc removal
and endo-coherence removal. The first states that disc removal is sufficient (and necessary) to
unify standard coherences and standard terms.

Theorem 3.3.26. The tame equality rule setR has disc removal if and only if the rule:

T : Tree n ∈ N n ≥ h(T) > 0

T ` CnT = T nT

is admissible.

Proof. We note that CnT and T nT only differ when T = Dn. If R has disc removal, then for
each n 6= 0 we have CnDn = SPath(pn) ≡ T nDn . Conversely, if CnT = T nT when n > 0 or
h(T) > 0, then CnDn = T nDn for any n > 0. Then asR is tame, we can apply the substitution
{A, t} to both sides of the equation to get the statement of disc removal.

Lastly, under the presence of endo-coherence removal, the standard coherences T nT for which
n > h(T) can be shown to be equal to identities.

Theorem 3.3.27. Suppose the equality rule setR has endo-coherence removal. Let T be a tree
and suppose n ≥ h(T). Then:

T ` Cn+1
T = Cn+1

Dn J{UnT , T nT }K

117

x y z
f g ∗ h

x′ y′ z′
g h

⇝

x x′ y′ z′
f g h

Figure 3.4: Insertion acting on the composite f ∗ (g ∗ h).

Proof. The following chain of equalities hold:

Cn+1
T ≡ SCoh(T ; T n

∂n(T)
JδTn (−)K→Un

T
T n
∂n(T)

JδTn (+)K)[idS]
≡ SCoh(T ; T n

T →Un
T
T n
T)[idS] by Proposition 3.3.19

= Cn+1
Dn J{UnT , T nT }K by ecR’

where ecR’ can be applied as Supp(T nT) = Var(bT c) by Lemma 3.3.22.

Due to these two theorems, every standard term T nT with n ≥ h(T) is equal to either the
unique variable of the singleton context (when n = h(T) = 0), a standard composite (when
n = h(T) > 0) or an identity (when n > h(T)), hence completely classifying the well-formed
standard terms.

3.4 Insertion
We now introduce insertion, the construction that powers the strictly associative behaviour of
Cattsua. Insertion incorporates part of the structure of a locally maximal argument term into
the head coherence, simplifying the overall syntax of the term.

Consider the composite f ∗ (g ∗ h). This term has two locally maximal arguments, f and
g ∗ h, the second of which is a (standard) coherence. Insertion allows us to merge these two
composites into one by “inserting” the pasting diagram of the inner coherence into the pasting
diagram of the outer coherence. In the case above we will get that the term f ∗ (g ∗h) is equal
to the ternary composite f ∗ g ∗ h, a term with a single coherence. As the term (f ∗ g) ∗ h also
reduces by insertion to the ternary composite, we see that both sides of the associator become
equal under insertion. The action of insertion on these contexts is shown in Figure 3.4.

Insertion is an operation that is best understood with respect to trees instead of ps-contexts.
Insertion merges the structure of two trees along a branch of the first tree.

Definition 3.4.1. Let S be a tree. A branch of S is a non-empty list of natural numbers P
which indexes a subtree SP which is linear. From each branch P , a maximal path P can be
obtained by concatenating P with ph(SP), the unique maximal path of SP .

For a branch P , we further define the branch height, bh(P), to be one less than the length of
P (noting that branches are non-empty lists), and the leaf height, lh(P), to be one less than
the length of P , which is equal to the dimension of bP̂ c.

While each branch P uniquely determines a maximal path P , the converse does not hold.

118

•

•

• •

• •

•

T P

P

th(T)
bh(P)

lh(P)

Figure 3.5: Leaf height, branch height and trunk height.

There may be multiple branches of a tree which correspond to the same maximal path. Con-
sider the tree T = [[[[[]], []], []]]. This has two distinct branches P = [0, 0, 0] and Q =
[0, 0, 0, 0] which both correspond to the maximal path [0, 0, 0, 0, 0]. We graphically depict
these branches below by drawing them in blue.

P =

•

•

• •

• •

•

Q =

•

•

• •

• •

•

While P andQ represent the same path, they have different branch heights: the branch height
of P is 2while the branch height ofQ is 3. This will cause insertions along these two branches
to proceed differently (though we will see later in Lemma 3.4.27 that if both insertions are
valid then the results are equivalent). The leaf height and branch height of the branch P is
demonstrated in Figure 3.5, where we also depict the trunk height of T , which was defined in
Section 3.2.

Let us again consider the tree S = [[[], []], []] from Figure 3.3. This tree has three branches,
corresponding to the maximal paths [0, 0, 0], [0, 1, 0], and [1, 0]. We consider the action of
insertion of three trees T1, T2, T3, given below, into branch P = [0, 0], which corresponds to
the first of these maximal paths.

T =

•

•

• •

T ′ =

•

• T ′′ =

•

• •

We first consider the insertion of T into S, which returns the inserted tree S�P T , where P
is drawn in blue on the diagram.

S =

•

•

• •

• T =

•

•

• •

S�P T =

•

•

• • •

•

In this case the structure of T is compatible with the point of insertion P and T can be inserted
into S, replacing the branch P with the appropriate part of T , where this appropriate part is
obtained by removing the trunk of T .

119

We now consider the insertion of T ′ into S. Despite T ′ having a lower height than S, it is still
insertable, forming the following tree S�P T

′.

S =

•

•

• •

• T ′ =

•

• S�P T
′ =

•

•

•

•

Here, the branch P is replaced by a singleton tree, which is the remaining part of T ′ after
removing its trunk. We note that this operation is the same as pruning the locally maximal
variable bP c from bT c. We will see in Section 3.4.1 that all instances of pruning can be repre-
sented as an instance of insertion.

When we consider the insertion of T ′′ into S, it is not clear how to proceed, as there is no
“corresponding part” of T ′′ to replace the branch P with. In the other two cases this is ob-
tained by removing the trunk of the tree, but T ′′ has no trunk to remove. In this case we say
that the insertion is not possible to perform as bh(P) > th(T ′′), a condition necessary for
insertion.

More generally we consider a (structured) coherence term SCoh(S ;A)[L] : STermU. To apply
insertion to this term, we must first identify a branch P of S such that P JLK ≡ C lh(P)

T JMK,
that is there is a locally maximal argument of L which is a standard coherence. We then must
construct the following data as part of the insertion operation:

• The inserted tree S�P T , obtained by inserting T into S along the branch P . We have
already given some examples of this operation.

• The interior labelling ι : T → S�P T , the inclusion of T into a copy of T living in the
inserted tree.

• The exterior labelling κ : S → S�P T , which maps P to standard coherence over the
copy of T , or more specifically C lh(P)

Θ JιK, and other maximal paths to their copy in the
inserted tree.

• The inserted labelling L�P M : S�P T → U, which collects the appropriate parts of
L andM .

Using this notation, insertion yields the following equality:

Coh(S ;A)[L] = Coh(S≪P T ;AJκK)[L�P M]

These constructions can be assembled into the following diagram, where n = lh(P):

Dn S

T S�P T

U

κ

ι

{Ty(P),P}

{Un
T ,C

n
T }

L

M

L≪P M

It will be proven in Section 3.4.1 that the square above is cocartesian, and so S�P T is the
pushout of S and T .

120

We now begin to define each of these constructions in turn. As we need a lot of data to perform
an insertion, we will package it up to avoid repetition.

Definition 3.4.2. An insertion point is a triple (S, P, T) such that S and T are trees and P
is a branch of S with bh(P) ≤ th(T) and lh(S) ≥ dim(T).

An insertion redex is a sextuple (S, P, T,U, L,M) such that (S, P, T) is an insertion point,
L : S → U and M : T → U are labellings with Ty(L) ≡ Ty(M) ≡ ⋆, and L(P) ≡
C lh(P)
T JMK.

We can now define the insertion operation on trees.

Definition 3.4.3 (Inserted tree). Let (S, P, T) be an insertion point. Define the inserted tree
S�P T by induction on the branch P , noting that P is always non-empty.

• Suppose P = [k] and S = [S0, . . . , Sk, . . . , Sn]. Then:

S�P T = [S0, . . . , Sk−1] ++T ++[Sk+1, . . . , Sn]

• Suppose P = k :: Q and again S = [S0, . . . , Sk, . . . , Sn]. We note that Q is a branch
of Sk and by the condition on trunk height of T we have T = Σ(T0). Then:

S�P T = [S0, . . . , Sk−1, (Sk�Q T0), Sk+1, . . . , Sn]

We draw attention to the condition of the trunk height of T being at least the branch height
of P , which is necessary for the induction to proceed. We recall that a tree is identified with
a list of trees, and that in the first case of insertion T is treated as a list, and in the second
case Sk�Q T0 is treated as a single tree which forms one of the subtrees of S�P T .

We now proceed to define the interior and exterior labellings, which will be done using the
diagrammatic notation introduced in Section 3.2.1.

Definition 3.4.4 (Interior labelling). Given an insertion point (S, P, T) we define the inte-
rior labelling ιS,P,T : T → S�P T by induction on P .

• When P = [k] and S = [S0, . . . , Sk, . . . , Sn] we define ι by Ty(ι) = ⋆ and:

[S0, . . . , Sk−1] ++ T ++ [Sk+1, . . . , Sn]

T

id

• When P = k :: Q, S = [S0, . . . , Sk, . . . , Sn], and T = [T0] (by the trunk height
condition) we define ι by Ty(ι) = ⋆ and:

[S0, . . . , Sk−1] ∨ ΣSk�Q T0 ∨ [Sk+1, . . . , Sn]

ΣT0

ΣιSk,Q,T0

121

We may drop the subscripts on ι when they are easily inferred.

Definition 3.4.5 (Exterior labelling). Given an insertion point (S, P, T), we define the ex-
terior labelling κS,P,T : S → S�P T by induction on P .

• When P = [k] and S = [S0, . . . , Sk, . . . , Sn] we define κ by Ty(κ) = ⋆ and:

[S0, . . . , Sk−1] ++ T ++ [Sk+1, . . . , Sn]

[S0, . . . , Sk−1] ∨ ΣSk ∨ [Sk+1, . . . , Sn]

{UmT , CmT }id id

Where we note that by the condition of P being a branch we have that Sk is linear
and so ΣbSkc is a some disc Dm wherem = h(Sk) + 1.

• When P = k :: Q, S = [S0, . . . , Sk, . . . , Sn], and T = [T0] (by the trunk height
condition) we define κ by Ty(κ) = ⋆ and:

[S0, . . . , Sk−1] ∨ ΣSk�Q T0 ∨ [Sk+1, . . . , Sn]

[S0, . . . , Sk−1] ∨ ΣSk ∨ [Sk+1, . . . , Sn]

ΣκSk,Q,T0id id

Again the subscripts on κ may be dropped where they can be inferred.

Lastly we define the inserted labelling, the labelling out of the inserted tree.

Definition 3.4.6 (Inserted labelling). Given an insertion point (S, P, T) with L : S → U
andM : T → U, we define the inserted labelling L�P M : S�P T → U. Let

S = [S0, . . . , Sn] L = s0{L0}s1 · · · {Ln}sn+1 : A

and then proceed by induction on P .

• Let P = [k], and

T = [T0, . . . , Tm] M = t0{M0}t1 · · · {Mm}tm+1 : B

Then define L�[k]M to be:

s0{L0}s1 · · · {Lk−1}t0{M0}t1 · · · {Mm}tm+1{Lk+1}sk+2 · · · {Ln}sn+1 : A

• Suppose P = k :: Q so that

T = [T0] M = t0{M0}t1 : B

Define L�P M as:

s0{L0}s1 · · · {Lk−1}t0{Lk�QM0}t1{Lk+1}sk+2 · · · {Ln}sn+1 : A

122

We now proceed to prove that each of these constructions used to generate insertion is well-
formed. We begin with the following small lemma.

Lemma 3.4.7. Let (S, P, T,U, L,M) be an insertion redex. If we further suppose that U `
L : S and U `M : T , then:

U ` L[k]→Ty(L) L[k + 1] =M [0]→Ty(M) M [m+ 1]

where k is the first element of P (as P is non-empty) and T has lengthm.

Proof. From the insertion redex, we have L(P) ≡ C lh(P)
T JMK. By assumption, P is of the

form k :: p, where p is a path and S = [S0, . . . , Sn] and so

SPath(P) ≡ Inck(SPath(p))

and so supposing that Sk ` SPath(p) : A (as every path is well-formed), we can obtain:

U ` SPath(P)JLK : Σ(A)JinckKJLK
By Proposition 3.3.24, U ` C lh(P)

T JMK : U lh(P)
T JMK. Therefore, by uniqueness of types (using

the syntactic equality from the insertion redex), we have:

U ` Σ(A)Jinck •LK = U lh(P)
T JMK

By truncating both sides of this equality lh(P)− 1 times we get:

U ` Σ(⋆)Jinck •LK = U1
T JMK

which after expanding definitions on both sides gives the required equality.

The typing properties of each of the constructions involved in insertion are given in the fol-
lowing proposition.

Proposition 3.4.8. Let (S, P, T) be an insertion point. Then:

S�P T ` ιS,P,T : T S�P T ` κS,P,T : S

If we further have U ` L : S and U `M : S with L(P) ≡ C lh(P)
T JMK then:

U ` L�P M : S�P T

Proof. The labellings ι and κ are formed using constructions that have already been shown
to be well-formed. We therefore focus on the typing judgement for the inserted labelling.
As in the definition of the inserted labelling, we let

S = [S0, . . . , Sn] L = s0{L0}s1 · · · {Ln}sn+1 : A

By inspection of the typing derivation U ` L : S we have that U ` si : A and U ` Li : Si
for each i.

123

We then proceed by induction on P .

• Let P = [k] and

T = [T0, . . . , Tm] M = t0{M0}t1 · · · {Mm}tm+1 : B

By U ` M : T , we have that U ` ti : B and U ` Mi : Ti for each i. Applying
Lemma 3.4.7, we have U ` A = B, U ` sk = t0, and U ` sk+1 = tm+1. Therefore, by
applying the conversion rule, U ` ti : A. To complete this case, we must show that
for each i:

U ` (L�P M)i : (S�P T)i

For most i this is trivial, however there is a subtlety for i = k−1 that (L�P M)k−1 6≡
Lk−1, as:

Ty((L�P M)k−1) ≡ sk−1 →A t0 6≡ sk−1 →A sk ≡ Ty(Lk−1)

However, the equality U ` sk = t0 means that these two types are definitionally
equal, and so the required typing derivation follows from U ` Lk−1 : Sk. A similar
argument is needed to prove that U ` Lk+1 : Sk+1, completing this case.

• Suppose P = k :: Q so that

T = [T0] M = t0{M0}t1 : B

with U `M0 : T0 and U ` ti : B for i ∈ {0, 1}. Then:

Lk(Q) ≡ L(P)

≡ C lh(P)
T JMK

≡ Σ
(
C lh(Q)
T0

) JMK
≡ C lh(Q)

T0
JM0K

and so by inductive hypothesis, we have U ` Lk�QM0 : Sk�Q T0. Then by a
similar argument to above it can be shown that L�P M is well-formed.

Hence, U ` L�P M : S�P T for all branches P .

We now end this section by formally giving the equality rule set for insertion.

Definition 3.4.9. The insertion rule set, insert, is the set consisting of the triples:

(Γ, bSCoh(S ;A)[L]c, bSCoh(S≪P T ;AJκS,P,T K)[L�P M]c)

for each insertion redex (S, P, T,Γ, L,M), and structured type A.

A set of rules R contains insertion if insert ⊆ R. Insertion makes the following rule admis-
sible:

(S, P, T,Γ, L,M) is an insertion redex S ` A Γ ` L : S

Γ ` SCoh(S ;A)[L] = SCoh(S≪P T ;AJκS,P,T K)[L�P M]

The setR has insertion if the rule inseRt holds in the generated theory.

124

3.4.1 Universal property of insertion
As stated in the previous section, the constructions involved in insertion arise as a pushout
square. In this section, we prove this result, which we state below. Throughout this section
we assume that we are working in a tame theory for which the support and preservation
conditions hold. Further, we only give the maximal arguments of substitutions from a disc, as
we only work with well-formed syntax up to definitional equality and so the type will always
be inferable.

Theorem 3.4.10. Let (S, P, T) be an insertion point. Then the following commutative square
of CattR is cocartesian:

Dlh(P) bSc

bT c bS�P T c

⌊κ⌋

⌊ι⌋

{⌊P ⌋}

{⌊Clh(P)
T ⌋} ⌟

The context bS�P T c is the pushout of bSc and bT c along the maps that send the maximal
variable ofDn to the locally maximal variable corresponding to the branch P and the standard
coherence of over T of dimension equal to the leaf height of P .

This theorem allows an intuitive understanding of the insertion operation; the inserted tree
S�P T is the result of taking the disjoint union of S and T and gluing the locally maximal
variable of S corresponding to the branch P to the composite of T . The original motivation
for insertion was to take a term where one of the locally maximal arguments was a standard
composition and flatten the structure, which aligns with the intuition given by the universal
property.

Remark 3.4.11. As contexts have an interpretation as freely generated∞-categories, and the
category of∞-categories is cocomplete, there is an∞-category pushout of this square. It
however may be surprising that this pushout is freely generated and happens to be freely
generated by a pasting diagram.

Wework towardsTheorem 3.4.10 by introducing a couple of lemmas. These lemmaswill mostly
be proven by deferring to the formalisation, using the machinery of structured terms intro-
duced in Section 3.3 to simplify the computations involved. We first show that the square is
commutative, while also justifying the description of the exterior labelling given at the start
of the section.

Lemma 3.4.12. Let (S, P, T) be an insertion point. Then κ(P) ≡ C lh(P)
T JιK.

Proof. See κ-branch-path in Catt.Tree.Insertion.Properties.

We next state two factorisation properties for the interior and exterior labellings.

Lemma 3.4.13. For insertion redex (S, P, T,U, L,M), the following hold:

ιS,P,T ◦ (L�P M) ≡M κS,P,T ◦ (L�P M) ≡max L

125

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#κ-branch-path
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

Hence, the maps L andM factor through the labellings κ and ι respectively.

Proof. See ι-comm and κ-comm in Catt.Tree.Insertion.Properties.

We can now proceed with the proof of Theorem 3.4.10.

Proof of Theorem 3.4.10. Let (S, P, T) be an insertion point. We must first show that the
candidate pushout square is in fact commutative, for which it is sufficient to show:

{Ty(P), P} • κ ≡max {U lh(P)
T , C lh(P)

T } • ι

which follows from Lemma 3.4.12. To prove that this square is cocartesian, we take two
substitutions σ : bSc → Γ and τ : bT c → Γ such that the following diagram is commutative:

Dlh(P) bSc

bT c bS�P T c

Γ

⌊κ⌋

⌊ι⌋

{⌊P ⌋}

{⌊Cn
T ⌋}

σ

τ

We therefore have that dσe is a labelling S → Γ and dτe is a labelling T → Γ with

Γ ` dσe(P) = C lh(P)
T JdτeK

To apply Lemma 3.4.13, we need this to be a syntactic equality. We therefore defineM = dτe
and L to be given by:

L(p) =

{
C lh(P)
T JMK if p = P

dσe(p) otherwise

by the equality above, L is well-formed and bLc = σ. We then get a well-formed
map bL�P Mc from bS�P T c to Γ such that the following diagram is commutative by
Lemma 3.4.13:

Dlh(P) bSc

bT c bS�P T c

Γ

⌊κ⌋

⌊ι⌋

{⌊P ⌋}

{⌊Cn
T ⌋}

⌊σ⌋

⌊M⌋

⌊L≪P M⌋

The uniqueness of this morphism follows from the observation that every path of S�P T
is either of the form ι(p) for some p : PathT or κ(q) for some q : PathS .

126

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#4201
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#4738
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

From this result we will be able to show that having insertion in a theory implies the existence
of pruning. The plan will be to show that pruning satisfies a similar universal property.

Proposition 3.4.14. Let D : Dyck0 be a Dyck word, and let p be a peak of D. Then the
following square is a pushout square:

Dn+1 bDc

Dn bD � pc

πp

{src(⌊p⌋)}

{⌊p⌋}

{id(dn)} ⌟

where dim(A) = n, and each substitution from a disc is given only by its maximal element.

Proof. As discussed in Section 3.1.2, the substitution πp sends bpc to the identity on the
source of bpc, which makes the square commute, as it suffices to consider the action of
each substitution on dn+1, the maximal variable of Dn+1. We now assume that we have
substitutions σ : bDc → Γ and {t} : Dn → Γ such that the following diagram commutes:

Dn+1 bDc

Dn bD � pc

Γ

πp

{src(⌊p⌋)}

{⌊p⌋}

{id(dn)}

σ

{t}

⌟

We immediately have that bpcJσK = id({t}). We can therefore let σ′ the same substitution
as σ but with bpcJσK replaced by id({t}), and then can form the substitution:

σ � p ≡ σ′ � p : bD � pc → Γ

By Proposition 3.1.15, we immediately have σ = σ′ = πp •σ� p. The other equality follows
from a diagram chase, noting that d−n in Dn+1 is sent to the variable dn in Dn by the map
{id(dn)}.

It remains to show that the chosen universal map σ � p is unique, but this is trivial as every
variable of bD � pc is also a variable of bDc, and so the universal map is fully determined
by the substitution σ.

Corollary 3.4.15. LetR have insertion. ThenR has pruning.

Proof. Assume R has insertion. Then take a term Coh(⌊D⌋ ;A)[σ] : TermΓ with a peak p :
PeakD such that:

bpcJσK ≡ id(A, t)

127

for some term t and type A of Γ. We then need to show that:

Γ ` Coh(⌊D⌋ ;A)[σ] = Coh(⌊D�p⌋ ;AJπpK)[σ � p]

From bDcwe can obtain a tree S with bSc ≡ bDc. Further, bpc is a locally maximal variable
of bDc, and so there exists a branch P such that bP c is this locally maximal variable, and
bh(P) = lh(P)− 1. Then the diagram:

Dn+1

Dn bSc

{id(t)} {⌊p⌋}

has two pushouts, the one given by insertion, and the one given by pruning. Therefore, we
obtain an isomorphism bS�P D

nc ∼= bD�pc. By Proposition 1.2.6, this isomorphismmust
be the identity (as both pushouts exist in Catt), and so we can deduce that πp = κS,P,Dn and
σ�p = bdσe�P{dte}c. Therefore, the above equality is given by an insertion along P .

3.4.2 The insertion rule
We now prove that the insertion rule set given in Section 3.4.2 satisfies the various conditions
presented in Section 2.4. We begin with the following lemma.

Lemma 3.4.16. Let (S, P, T) be an insertion point and let L : S → U and M : T → U
be labellings. Let f : STermU → STermU′ be any function from structured terms of U to
structured terms of U′. Then for any path p of S�P T we have:

f((S�P T)(p)) ≡ ((f ◦ L)�P (f ◦M))(p)

where f ◦ L is the result of composing f to the function component of L.

Proof. The proof of this follows by a simple induction on P and is given in the formalisation
module Catt.Tree.Insertion.Properties by function label-from-insertion-map.

Proposition 3.4.17. The insertion rule set, insert, satisfies the suspension condition. It further
satisfies the R-substitution condition for any rule set R, and so also satisfies the weakening
condition.

Proof. Let (S, P, T,Γ, L,M) be an insertion redex and let A be a structured type of S, such
that:

s ≡ SCoh(S ;A)[L] t ≡ SCoh(S≪P T ;AJκS,P,T K)[L�P T] (Γ, bsc, btc) ∈ insert

To prove the suspension condition, we observe that 0 :: P is a branch of Σ(S) such that
Σ(S)�0::P Σ(T) ≡ Σ(S�P T) and κΣ(S),0::P,Σ(T) ≡ Σ(κS,P,T) by definition. By applying
Lemma 3.4.16 with f = Σ, we get:

Σ′(L)�P Σ′(M) ≡ Σ′(L�P M)

128

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#label-from-insertion-map

and so by unwrapping definitions we obtain Σ(L)�0::P Σ(M) ≡ Σ(L�P M). Therefore,
we have:

Σ(s) ≡ SCoh(Σ(S) ; Σ(A))[Σ(L)]

Σ(t) ≡ SCoh(Σ(S)≪0::P Σ(T) ; Σ(A)JκΣ(S),0::P,Σ(T)K)[Σ(L)�0::P Σ(M)]

and so as
Σ(L)(0 :: P) ≡ Σ′(L)(P) ≡ Σ(C lh(P)

T JMK) ≡ C lh(0::P)
Σ(T) JΣ(M)K

we get (Σ(Γ),Σ(bsc),Σ(btc)) ∈ insert as required.

For the substitution condition we let σ : Γ→⋆ ∆ be any substitution. Then:

bscJσK ≡ bSCoh(S ;A)[L • dσe]c btcJσK ≡ bSCoh(S≪P T ;AJκS,P,T K)[(L�P T) • dσe]c

Again using Lemma 3.4.16, this time with f = u 7→ uJdσeK, we have:

(L�P M) • dσe ≡ L • dσe�P M • dσe

Further, we have the equality:

(L • dσe)(P) ≡ L(p)JdσeK ≡ C lh(P)
T JM • dσeK

and so (Γ, bscJσK, btcJσK) ∈ insert and so insert satisfies the R-substitution condition for
anyR, as we made no assumption on σ being well-formed.

We next prove the support condition for the insertion rule set. We start with the following
support lemma for the exterior labelling.

Lemma 3.4.18. Let (S�P T) be an insertion point. Then:

Supp(κS,P,T) = Var(S�P T)

The exterior labelling is full.

Proof. Proof proceeds by induction on P , the only non-trivial case is P = [k], where we
rely on Supp({U lhP

T , C lhPT }) being Var(T). A full proof is given in the formalisation module
Catt.Tree.Insertion.Support.

Similar to the other rule sets introduced so far, to prove the support condition for the insertion
rule set, wewill take an arbitrary rule setR that is tame and satisfies the support condition, and
prove instead that the insertion set satisfies the R-support condition. This result can be then
used as part of the strategy for proving the support condition outlined in Lemma 2.4.28.

Proposition 3.4.19. Let R be a tame equality rule set that satisfies the support condition.
Then insert satisfies theR-support condition.

129

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Support.html

Proof. As in the previous proposition, let (S, P, T,Γ, L,M) be an insertion redex and A a
structured type of S, such that:

s ≡ SCoh(S ;A)[L] t ≡ SCoh(S≪P T ;AJκS,P,T K)[L�P T] (Γ, bsc, btc) ∈ insert

We now assume that Γ `R bsc : B for some B and must prove that Supp(s) = Supp(t). By
inspecting the typing judgement, we can obtain proofs of the following typing judgements:

Γ ` L : S S ` A Γ `M : T

where the typing of M is obtained by transporting the typing of L(P) along the syntactic
equality L(P) ≡ C lh(P)

T JMK. By Lemma 3.4.13, we have:

κS,P,T • L�P M ≡max L

By Proposition 3.4.8, both sides of this equation are well-formed and so by Theorem 3.3.16,
we obtain the equality:

Γ `R κS,P,T • L�P M = L

AsR satisfies the support property, we get:

Supp(s) = Supp(L)
= Supp(κS,P,T • L�P M)

= Supp(κS,P,T)JL�P MK
= Var(S�P T)JL�P MK by Lemma 3.4.18
= Supp(L�P M)

= Supp(t)

and so Supp(bsc) = Supp(btc) as required.

Similarly to the situation in pruning, we are not able to show that the type AJκK is a valid
operation without knowing more about the set of operations O. We therefore introduce the
following additional condition on the set of operations.

Definition 3.4.20. An operationO supports insertion if for all insertion points (S, P, T) and
variable sets U, V ⊆ Var(S) we have:

(bS�P T c, bUJκS,P,T Kc, bV JκS,P,T Kc) ∈ O
whenever (bSc, U, V) ∈ O

Using this property, we can give the preservation condition for the insertion rule set.

Proposition 3.4.21. LetR be a tame equality rule set and suppose the operation setO supports
insertion. Then the set insert satisfies theR-preservation condition.

130

Proof. Let (S, P, T,Γ, L,M) be an insertion redex and let a→A b be a structured type such
that:

s ≡ SCoh(S ; a→Ab)[L] t ≡ SCoh(S≪P T ; (a→Ab)JκS,P,T K)[L�P T] (Γ, bsc, btc) ∈ insert

We now suppose that Γ ` bsc : B and aim to prove that Γ ` btc : B. By inspecting the
typing derivation we get:

S ` a→A b Γ ` L : S Γ `M : T (bSc, Supp(a), Supp(b)) ∈ O

Γ ` (a→A b)JLK = A

and so by Proposition 3.4.8 we have:

S�P T ` κS,P,T : S Γ ` L�P M : S�P T

As the operation set supports insertion with Supp(aJκK) = Supp(a)JκK and Supp(bJκK) =
Supp(b)JκK we get:

(bS�P T c, Supp(aJκK), Supp(bJκK))
and so we obtain:

Γ ` SCoh(S≪P T ; (a→Ab)JκK)[L�P M] : (a→A b)JκKJL�P MK
By Lemma 3.4.13 and Theorem 3.3.16, Γ ` κ • L�P M = L, and so:

(a→A b)JκKJL�P MK ≡ (a→A b)Jκ • (L�P M)K
= (a→A b)JLK
= B

and so by applying the conversion rule we obtain Γ ` btc : B as required.

3.4.3 Further properties
It has now been proved that insertion can form part of a reasonable type theory. We now
proceed to prove further properties of the insertion construction that will be critical for prov-
ing the confluence of Cattsua in Section 4.3. The majority of these properties will therefore
concern the interaction of insertion with other constructions and itself. We will justify each
property with up to three of the following methods:

• For each property, we will give a graphical depiction of the constructions involved, sim-
ilar to the diagram for Proposition 3.1.22, which should help build intuition for the con-
structions at play.

• Where applicable, each combination of constructions will be described using the univer-
sal property from Section 3.4.1. This can be used to classify these constructions up to
definitional equality.

• As these properties are used in a confluence proof, we will need a more syntactic form
than can be offered by the universal property approach. To do this we fall back to

131

the formalisation, using the computation power of structured terms to brute force each
property.

The first two properties we consider concern the interaction of insertion with disc contexts,
and will be crucial for proving confluence cases involving insertion and disc removal. Disc
contexts often admit insertions, and the disc acts as a left and right unit for the insertion
operation.

Insertion into a disc We begin by considering insertions into a disc. A disc context has a
branch of height 0, and so if the locally maximal variable is sent to a standard coherence, then
insertion can always be preformed. Inserting into a disc effectively performs disc removal,
replacing the entire disc with the entirety of the inner context. We illustrate this by the fol-
lowing diagram, where we take the branch [0, 0] of D4 (which we note is not the minimal
branch).

•

•

•

•

•

�[0,0]

•

•

• •

• •

•

=

•

•

• •

• •

•

This property of insertion also has a simple proof by universal property. Suppose we have disc
Dn with a branch P and we insert tree T . Then the inserted tree is given by the following
pushout.

Dn Dn

T Dn�P T

{Cn
T }

id

ι

κ⌟

By standard properties of pushouts, we have thatDn�P T is isomorphic to T . As this pushout
holds in Catt, we have a Catt isomorphism between pasting contexts and so by Proposi-
tion 1.2.6, T = Dn�P T , ι = id. The following lemma gives syntactic versions of these
properties.

Lemma 3.4.22. Let T be a tree, n ≥ dim(T), and P a branch of Dn with bh(P) ≤ th(T).
ThenDn�P T = T and ιDn,P,T ≡ id. Suppose further that (Dn, P, T,Γ, L,M) is an insertion
redex. Then L�P M ≡M .

Proof. See the functions disc-insertion, disc-ι, and disc-label-from in formalisation module
Catt.Tree.Insertion.Properties.

Insertion of a disc We now consider the opposite situation, where a disc context is inserted
into an arbitrary tree. For a tree T , with a branch P , we can always insert the disc context

132

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#disc-insertion
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#disc-ι
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#disc-label-from
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

Dlh(P), as the trunk height condition will be satisfied by the linearity of the disc context. Insert-
ing such a disc context makes no change to the tree T , as the operation effectively replaces
a branch of T (which is linear by construction) by a disc. The diagram below depicts this
construction.

•

•

• •

• •

• •

�[0,1,0,0]

•

•

•

•

•

=

•

•

• •

• •

• •

Similar to the insertion into the disc, the insertion of a disc can be characterised by univer-
sal property. Take any tree T with a branch P . Then the tree T �P D

lh(P) is the following
pushout:

Dn T

Dn T �P D
n

{P}

{Cn
Dn}

ι

κ⌟

The situation here is less clear than before, as the mapDn → Dn is not the identity. However,
in the presence of disc removal this map becomes equal to the identity, and in this case a similar
argument can be made to determine that κ should be the identity and T �P D

lh(P) should be
equal to the tree T . The results are given in the lemma below:

Lemma 3.4.23. Let (T, P,Dlh(P),Γ, L,M) be an insertion redex. Then:

T �P D
lh(P) ≡ S L�P M ≡max L

We further have:
S `R κS,P,Dlh(P) =max idS

ifR is a (tame) equality rule set which has disc removal.

Proof. See the functions insertion-disc and disc-label-from-2 in the formalisation module
Catt.Tree.Insertion.Properties and κ-disc in Catt.Typing.Insertion.Equality.

Insertion of an endo-coherence We now turn our attention to the interaction between
insertion and endo-coherence removal. Unlike in Cattsu, the locally maximal argument in
an insertion redex need not be in normal form. In particular, since the only condition on the
locally maximal argument is that it is a standard coherence, it may be an endo-coherence. In
such a situation there are two distinct ways of applying equalities:

• The endo-coherence could be directly inserted into the head term.

133

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-disc
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#disc-label-from-2
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html#10459
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html

• The endo-coherence could be transformed into an identity on a standard coherence (see
Theorem 3.3.27) after which the head term could undergo two insertions, the first of
which “prunes” the identity, and the second of which inserts the locally maximal argu-
ment of the pruned identity.

As the insertion of an identity acts in a similar way to pruning (see Corollary 3.4.15), we re-use
the notation.

Definition 3.4.24. Let S be a tree, and P be a branch of S. Then define:

S � P = S�P D
lh(P)−1 πP = κS,P,Dlh(P)−1

where we note that (S, P,Dlh(P)−1) is always an insertion point.

To perform the second equality path of pruning an identity followed by inserting the maximal
argument of that identity, we must obtain a branch of the pruned context S � P . This can be
done when lh(P) − bh(P) ≥ 2 by taking the same list as P , as depicted in Figure 3.6. We
name such a branch the pruned branch.

Definition 3.4.25. Let S be a tree, and P be a branch of S with lh(P) − bh(P) ≥ 2. We
then define the pruned branch P ′ of S � P to be given by the same list as P .

If lh(P)− bh(P) = 1 (noting that lh(P)− bh(P) cannot be zero) then pruning the branch P
removes the branch entirely, and so the condition lh(P)−bh(P) ≥ 2 is necessary to form the
pruned branch. It is clear that bh(P ′) = bh(P) and lh(P ′) = lh(P)− 1.

•

• •

•

• •

• •

bh(P)

lh(P)

(a) Tree S and branch P = [1, 0, 0].

•

• •

•

• •

•

(b) Tree S � P and branch P ′ = [1, 0, 0].

Figure 3.6: The pruned branch.

We also note that the path P ′ is the maximal argument of the labelling ιS,P,DlhP−1 , the inclusion
ofDlh(P)−1 intoS�P . Insertion along the pruned branch is then characterised by the following

134

pushout.

Dn S

Dn−1 S � P

T (S � P)�P ′ T

U

U

{P}

πP

{P ′}

{Cn
Dn−1}

{Cn−1
T } κ

ι

⌟

⌟

L

M

L≪
P ({C n−

1T
}•M

)(L≪
P ({C n−

1T
}•M

))≪
P ′ M

The top pushout is from the construction of S � P , noting that ιS,P,Dlh(P)−1 = {P ′}. The
bottom pushout is from the construction of the insertion along the pruned branch. By the
pasting lemma for pushouts, the whole outer rectangle is also a pushout along the maps {P̂}
and {CnDn−1} • {Cn−1

T }. In the presence of endo-coherence removal we have:

{CnDn−1} • {Cn−1
T } = {CnT}

by Theorem 3.3.27 and so the outer pushout rectangle is the pushout generated by directly
inserting the endo-coherence. There are twoways to form the uniquemap (S�P)�P ′ T → U,
one by the outer pushout rectangle that gives the map L�P M , and one by first using the top
pushout square with the maps L and {Cn−1

T }•M to get a map S�P → U, and then using this
mapwith the bottom pushout square andM to get themorphisms depicted in the commutative
diagram.

These results appear in the next lemma.

Lemma 3.4.26. Suppose S has branch P with lh(P)− bh(P) ≥ 2. Then ιS,P,Dlh(P)−1 ≡ {P ′}.
Further suppose that (S, P, T) is an insertion point. Then if the (tame) rule set R has disc
removal and endo-coherence removal we get:

(S � P)�P ′ T = S�P T U `R πP • κS�P,P ′,T =max κS,P,T

If we further have that (S, P, T,U, L,M) is an insertion redex then:

(L�P ({C lh(P)−1
T } •M))�P ′ M ≡max L�P M

Proof. See the functions insertion-tree-pruned-branch, pruned-branch-prop, and label-
from-pruned-branch in formalisation module Catt.Tree.Insertion.Properties, and pruned-
branch-κ in Catt.Typing.Insertion.Equality.

Branch irrelevance As has already been noted, a treeSmay admit multiple branchesP and
Q which represent the same locally maximal variable, that is P ≡ Q. If there is an insertion
that can be applied along either branchP orQ then it does not matter which branchwe choose.

135

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-tree-pruned-branch
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#pruned-branch-prop
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#label-from-pruned-branch
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#label-from-pruned-branch
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html#3281
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html#3281
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html

This can be immediately seen by the universal property: The pushout square for an insertion
point (S, P, T) only mentions the path P and never uses the actual branch P .

Lemma 3.4.27. Suppose (S, P, T) and (S,Q, T) are insertion points with P ≡ Q. Then
S�P T ≡ S�Q T and κS,P,T ≡max κS,Q,T . If we further have L : S → Γ andM : T → Γ,
then L�P M ≡max L�QM .

Proof. See the functions insertion-irrel, κ-irrel, and irrel-label-from in formalisation module
Catt.Tree.Insertion.Properties.

It is natural to ask why we define branches at all, and don’t identify points where insertion can
be performed by a maximal path, implicitly taking the branch of minimal branching height.
While this could be done, it would make other confluence cases more difficult, as the branch
associated to a maximal path could significantly change if a different branch is pruned from
the tree.

Parallel insertion We now begin to consider the interaction between insertion and itself.
In contrast to the previous case, we now consider two branches P and Q such that P and
Q are not the same maximal path, in which case we say the branches P and Q are parallel.
Assume we have a tree S such that (S, P, T) and (S,Q, U) are insertion points. We then aim
to perform both insertions, and prove that the order they occur in is irrelevant. To do this we
must form a branch of the inserted tree S�P T , which is intuitively given by the branch Q,
but such a branch must be adapted to the new inserted tree.

Definition 3.4.28. Let (S, P, T) be an insertion point and let Q be a branch of S such that
P 6= Q. Then we define the branch Q�P T of S�P T by induction on P and Q.

• Suppose P = [k] and Q = j :: x. Then if j < k we let Q�P T = Q. Otherwise, we
let:

Q�P T = (j + len(T)− 1) :: x

• Suppose P = k :: P2 and Q = j :: x. If j 6= k then let Q�P T = Q. Otherwise, both
P2 and x are branches of Sk and so we let

Q�P T = k :: x�P2 T

It is clear that Q�P T satisfies the condition for being a branch.

The maximal path associated to the branch Q�P T is obtained by applying the labelling κ to
the maximal path associated to Q. That is:

Q�P T ≡ QJκS,P,T K
A graphical example of such a situation is given in Figure 3.7 where we note how the right
branch changes after the left-hand insertion is performed. We also note that the final trees at
the bottom of the diagram are coloured slightly differently, which corresponds to the inserted
labellings from these trees being different. To remedy this, we introduce a variant of the
inserted labelling, which takes arguments from the head labelling instead of the argument
labelling wherever possible.

136

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-irrel
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#κ-irrel
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#irrel-label-from
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

•

•

• • •

[1,0]�

•

• • •

• •

�[1,1]

•

•

• •

•

• • •

• • • •

�[1,3]

•

•

• •

•

•

• • •

[1,0]�

•

• • •

• • •

•

• • •

• • • • •

•

• • •

• • • • •

Figure 3.7: Parallel insertions.

Definition 3.4.29. We define an alternative to the inserted labelling as follows: Given an
insertion point (S, P, T)with L : S → U andM : T → Uwe define this alternative inserted
labelling L�′

P M : S�P T → U. Let
S = [S0, . . . , Sn] L = s0{L0}s1 · · · {Ln}sn+1 : A

and then proceed by induction on P .

• Let P = [k], and
T = [T0, . . . , Tm] M = t0{M0}t1 · · · {Mm}tm+1 : B

Then define L�[k]M to be:
s0{L0}s1 · · · {Lk−1}sk{M0}t1 · · · {Mm}sk+1{Lk+1}sk+2 · · · {Ln}sn+1 : A

• Suppose P = k :: Q so that
T = [T0] M = t0{M0}t1 : B

Define L�P M as:
s0{L0}s1 · · · {Lk−1}sk{Lk�QM0}sk+1{Lk+1}sk+2 · · · {Ln}sn+1 : A

The terms that differ from the regular inserted labelling are written in bold. In the edge case
whereM = [], we arbitrarily use sk instead of sk+1 for the definition of L�′

[k]M .

137

It is immediate that the alternative inserted labelling only differs up to definitional equal-
ity.

Proposition 3.4.30. Let (S, P, T,U, L,M) be an insertion redex. Then:

L�′
P M = L�P M

Proof. See function label-from-insertion-eq in the module Catt.Tree.Insertion.Typing.

We now examine the universal property of parallel insertion. This is given by the following
diagram, where we insert alongP first, followed byQ, letting n = lh(P) andm = lh(Q).

Dn T

Dm S S�P T

U (S�P T)�Q≪P T U

{P}

{Q}

{Cm
U }

{Cn
T }

ιS,P,T

κS,P,T

κS ≪P T,Q≪P T,U

ιS ≪P T,Q≪P T,U

⌟

⌟

Here, the top pushout square is given by the insertion along P , and the bottom square is given
by the insertion along Q�P T , noting that:

{Q} • κS,P,T ≡ {Q�P T}

The construction is therefore given by the colimit of the top-left border of the diagram. By
a symmetric argument, it can be seen that performing the insertions in the opposite order
also leads to a colimit of the same diagram. We state the lemma that formally states these
ideas.

Lemma 3.4.31. Let (S, P, T) and (S,Q, U) be insertion points such that P 6≡ Q. Then we
have:

(S�P T)�Q≪P T U ≡ (S�Q U)�P ≪Q U T

κS,P,T ◦ κS≪P T,Q≪P T,U ≡max κS,Q,U ◦ κS≪Q U,P ≪Q U,T

Further:

(L�P M)�′
Q≪P T N ≡max (L�QN)�′

P ≪Q U M

for any insertion redexes (S, P, T,U, L,M) and (S, P, T,U, L,N).

Proof. See functions insertion-parallel, κ-parallel, and label-from-parallel in formalisation
module Catt.Tree.Insertion.Properties.

Boundaries of inserted trees We now work towards the most complex property of inser-
tion, the action of insertion on an insertable argument. To do this, we must first understand

138

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Typing.html#label-from-insertion-eq
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Typing.html
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-parallel
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#33917
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#40709
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

the action of insertion on standard coherences, which itself requires an understanding of how
insertion interacts with the boundary inclusion maps of trees.

There are two fundamental cases for the boundary of an inserted tree:

• The boundary has low enough dimension such that it is unaffected by the insertion. In
this case applying the boundary to the inserted tree is the same as applying the boundary
to the original tree.

• The boundary has sufficient dimension such that the boundary of the original tree still
contains the insertion branch. In this case applying the boundary to the inserted tree is
the same as inserting into the boundary of the original tree along this branch.

We beginwith the first case. Supposewe have an insertion point (S, P, T) and a dimension n ∈
N. The main criterion for the boundary having no interaction with the insertion is that:

n ≤ th(T)

When this condition holds, taking the n-boundary of T returns a linear tree, and we have
already seen that inserting linear trees has no effect on the head tree. We illustrate this case
in the diagram below, where the tree T has trunk height 3 and we set n = 2. The dashed line
represents taking the boundary operation, and it is easy to see that the two boundary of S and
the insertion tree S�P T are the same.

•

• •

• •

• •

•

�[1,0,0]

•

•

•

•

• •

=

•

• •

• •

• •

• •

As well as knowing about the interaction of the boundary with the inserted tree, we also need
to investigate the interaction of the inclusion maps with the exterior labelling. In this first
case, we would hope to prove that:

δ−d (S) • κS,P,T ≡ δ−d (S�P T)

Now that ∂n(S�P T) ≡ ∂n(S), there are two ways to encode the source inclusion ∂d(S) into
S�P T . The right-hand side of the above equation directly includes ∂d(S�P T) into the
source of S�P T , and the left-hand side first includes ∂d(S) into the source of S and then
projects S onto S�P T via the exterior labelling.

There is a catch with proving this equality; The exterior labelling sends P to the standard
coherence, and so if δ−d (S) has P in its image, the equality cannot hold syntactically. We
therefore further require that d < lh(P), which ensures this cannot happen. We now state
these results in the following lemma.

139

Lemma 3.4.32. Let n ∈ N and suppose (S, P, T) is an insertion point such that n ≤ th(T).
Then:

∂n(S) ≡ ∂n(S�P T)

If we further have n < lh(P) then:

δϵn(S) ◦ κS,P,T ≡max δϵn(S�P T)

for ϵ ∈ {−,+}.

Proof. See the functions insertion-bd-1 and bd-κ-comm-1 in the formalisation module
Catt.Tree.Insertion.Properties.

We now move to the second case. We again suppose we have an insertion point (S, P, T) and
dimension n ∈ N. To perform an insertion into the boundary ∂n(S), the dimension n must
be high enough not to remove the branch P from S. More specifically, we must have the
inequality:

n > bh(P)

which ensures that the list P is still a branch of ∂n(S).

Definition 3.4.33. Let S be a tree with a branch P , and let n > bh(P). Then there is a
branch ∂n(P) of ∂n(S) given by the same list as P with bh(∂n(P)) = bh(P).

As th(∂n(T)) ≥ bh(P) when th(T) ≥ bh(P) and n > bh(P), we are able to insert the tree
∂n(T) into ∂n(S) along the branch ∂n(P). This is depicted in the following diagram, where
bh(P) = 2 and n = 3. In this diagram, the insertion S�P T is drawn, and dashed lines are
drawn across each tree where they would be truncated by the boundary operation. Crucially,
the branch is still well-formed under this line, and preforming the insertion on the truncated
trees yields the truncation of the inserted tree.

•

• •

•

• •

• •

�[1,0,0]

•

•

•

• •

•

=

•

• •

•

• • •

• •

As with the previous case, we explore the interaction of the boundary inclusion labellings and
the exterior labelling. We aim to give conditions under which:

δ−n (S) • κS,P,T ≡ κ∂n(S),∂n(P),∂n(T) • δ−n (S�P T)

We examine the action of each side of the equation on the path ∂n(P). On the right-hand side,
this path is sent by κ to a standard coherence, and so on the left-hand side, (δ−n (S))(∂n(P))
must also be sent to a standard coherence byκ. If (δ−n (S))(∂n(P)) is amaximal path, whichwill

140

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-bd-1
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#bd-κ-comm-1
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

always be the case when n ≥ lh(P), then it will be sent to a standard coherence. Alternatively,
if n ≤ lh(P) then lh(∂n(P)) = n and if n > th(T) then the standard term returned by κS,P,T
will be a standard coherence. These conditions lead to the following lemma.

Lemma 3.4.34. Let n ∈ N and suppose (S, P, T) is an insertion point with n > bh(P). Then:

∂n(S)�∂n(P) ∂n(T) ≡ ∂n(S�P T)

Suppose further that one of the following holds:

1. n > th(T) and n ≤ lh(P)

2. n ≥ lh(P)

Then:
δϵn(S) • κS,P,T ≡max κ∂n(S),∂n(P),∂n(T) • δϵn(S�P T)

for ϵ ∈ {−,+}.

Proof. See the functions insertion-bd-2 and bd-κ-comm-2 in the formalisation module
Catt.Tree.Insertion.Properties.

Both of the further conditions in Lemma 3.4.34 imply that n > bh(P). We have therefore seen
3 conditions that can be put on n, P , and T :

• n ≤ th(T) and n < lh(P),

• n > th(T) and n ≤ lh(P),

• n ≥ lh(P).

One of these conditions must always hold for any n and insertion point (S, P, T), and hence
one of Lemmas 3.4.32 and 3.4.34 can always be applied.

Remark 3.4.35. The further conditions in each of Lemmas 3.4.32 and 3.4.34 could be dropped
in favour of weakening the syntactic equalities to definitional equalities in a theory with
disc removal, as this would remove the distinction between standard terms and standard
coherences. It was however more convenient to take this approach in the formalisation,
and although the extra side conditions may seem arbitrary, the key result is that one of the
above lemmas always holds.

Insertion into standard constructions Equipped with Lemmas 3.4.32 and 3.4.34, we can
now prove that the standard constructions are preserved by applying an exterior labelling up
to a definitional equality containing insertion and disc removal. We begin with the following
lemma, whose intuition is clear from the universal property of insertion.

Lemma 3.4.36. Suppose (S, P, T) is an insertion point. Then κS,P,T �P ιS,P,T ≡ idS≪P T .

Proof. See κ-ι-prop in Catt.Tree.Insertion.Properties.

We can then proceed to the main theorem of this section.

141

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-bd-2
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#50068
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#κ-ι-prop
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

Theorem 3.4.37. LetR be a tame equality rule set that has disc removal and insertion. Then
for any insertion point (S, P, T) and n ∈ N, we have:

S�P T `R T n∂n(S)Jδϵn(S) • κS,P,T K = T n∂n(S≪P T)
Jδϵn(S�P T)K

S�P T `R UnS JκS,P,T K = UnS≪P T

for ϵ ∈ {−,+} and if n ≥ h(S) then:

S�P T `R CnSJκS,P,T K = CnS≪P T
S�P T `R T nS JκS,P,T K = T nS≪P T

Proof. We prove all three properties by mutual induction: We begin with the equality:
T n∂n(S)Jδϵn(S) • κS,P,T K = T n∂n(S≪P T)

Jδϵn(S�P T)K
The conditions for either Lemmas 3.4.32 and 3.4.34 must hold, and so we treat in case sep-
arately. If the conditions for Lemma 3.4.32 hold then the required equality is immediately
implied by ∂n(S�P T) ≡ ∂n(S) and δϵn(S)•κS,P,T ≡ δϵn(S�P T). If instead the conditions
for Lemma 3.4.34 hold then:

T n∂n(S)Jδϵn(S) • κS,P,T K ≡ T n∂n(S)Jκ∂n(S),∂n(P),∂n(T) • δϵn(S�P T)K
≡ T n∂n(S)Jκ∂n(S),∂n(P),∂n(T)KJδϵn(S�P T)K
= T n∂n(S)≪∂n(P) ∂n(T)

Jδϵn(S�P T)K
≡ T n∂n(S≪P T)

Jδϵn(S�P T)K
where the definitional equality is due to the inductive hypothesis on terms.

We continue to the case for types. If n = 0, then both sides of the equality are ⋆. Instead,
consider the n+ 1 case, where we have:

Un+1
S JκS,P,T K ≡ T n∂n(S)Jδ−n (S)KJκS,P,T K Un+1

S≪P T
≡ T n∂n(S≪P T)

Jδ−n (S�P T)K
→Un

S JκS,P,T K →Un
S ≪P T

T n∂n(S)Jδ+n (S)KJκS,P,T K T n∂n(S≪P T)
Jδ+n (S�P T)K

By the inductive hypothesis on n, we have UnS JκS,P,T K = UnS≪P T
, and other necessary

equalities follow from the first case we considered.

We now consider the case for standard coherences, where we must prove that:
SCoh(S ;Un

S)[κS,P,T] = SCoh(S≪P T ;Un
S ≪P T)[id]

By Lemma 3.4.12, P JκKS,P,T is the standard coherence C lh(P)
T JιS,P,T K, and so the left-hand

side of the above equation admits an insertion. Therefore:
SCoh(S ;Un

S)[κS,P,T] = SCoh(S≪P T ;Un
S JκS,P,T K)[κS,P,T �P ιS,P,T] by insertion

≡ SCoh(S≪P T ;Un
S JκS,P,T K)[id] by Lemma 3.4.36

= SCoh(S≪P T ;Un
S ≪P T)[id] by inductive hypothesis

≡ CnS≪P T

The equality for standard terms follows from the equality for standard coherences, using
Theorem 3.3.26.

142

Corollary 3.4.38. If R has disc removal and insertion, then an insertion into a standard co-
herence is equal to the standard coherence over the inserted tree.

Proof. Let s ≡ CnSJLK be a standard coherence, and suppose (S, P, T,U, L,M) is an insertion
redex with U ` s : A for some A. Then:

CnSJLK = SCoh(S≪P T ;Un
S JκS,P,T K)[L�P M]

= SCoh(S≪P T ;Un
S ≪P T)[L�P M]

= CnS≪P T
JL�P MK

and so s is equal to a standard coherence over the tree S�P T .

Chained insertion We explore the situationwhere a term s has a locallymaximal argument
t which can be inserted, and this term t admits an insertion itself. For the argument t to be
insertable, it must be a standard coherence, and by Corollary 3.4.38, if t = t′ by insertion, then
t′ will be equal to a standard coherence over some tree T . For the term t′ to be insertable, T
must have sufficient trunk height. Conditions for this are given in the following lemma.

Lemma 3.4.39. Let (S, P, T) be an insertion point. Further, assume S is not linear. Then
th(S�P T) ≥ th(S).

Proof. See insertion-trunk-height in Catt.Tree.Insertion.Properties.

If a tree S is not linear, then any branch of S has branch height greater than the trunk height
of S, and hence any insertion into S only modifies the tree above its trunk height, and so can
only increase the trunk height. Therefore, if (S, P, T) and T,Q, U are insertion points, and T
is not linear, then (S, P, T �Q U) is also an insertion point.

Conversely, it is possible to insert the argument directly into the head term, before performing
the inner insertion, looking to perform the inner insertion afterwards. For this to be possible,
a branch of the inserted tree must be given. This can again be done under a non-linearity
condition.

Definition 3.4.40. Let (S, P, T) be an insertion point where T is not linear. Then from a
branch Q of T we can obtain a branch S�P Q of S�P T . We first observe that bh(Q) ≥
th(T) ≥ bh(P). We define this branch by induction on P and Q:

• Suppose P = [k] and Q = q :: x. Then define:

S�P Q = (k − 1 + q) :: x

• Suppose P = k :: P2 with S = [S0, . . . , Sn] and T = Σ(T0). In this case we must
have Q = 0 :: Q2 where Q2 is a branch of T0. Then define:

S�P Q = k :: Sk�P2 Q2

It is clear that S�P Q has the same branching and leaf height as Q.

143

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-trunk-height
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html

A simple inductive proof shows that:

S�P Q ≡ QJιS,P,T K
Now given insertion points (S, P, T) and (T,Q, U) with T non-linear we have that the triple
(S�P T, S�P Q,U) is another insertion point. Therefore, two ways of performing both
insertions, which are depicted in Figure 3.8.

•

• •

• •

• •

• •

�[1,0]

•

•

•

• •

• •

�[0,0,0,0]

•

•

•

•

• •

•

• •

• •

• • •

• • •

�[1,0,0,0]

•

•

•

•

• •

•

• •

• •

• •

• •

�[1,0]

•

•

•

• •

• • •

•

• •

• •

• • •

• • • •

Figure 3.8: Chained insertion.

We now explore the universal property of the insertion along the branch S�P Q. We assume

144

that n = lh(P) andm = lh(Q) and form the following diagram:

Dn S

Dm T S�P T

U (S�P T)�S≪P Q U

{P}

{Cn
T }

{Q}
{Cm

U }

ιS,P,T

κS,P,T

κS ≪P T,S ≪P Q,U

ιS ≪P T,S ≪P Q,U

⌟

⌟

The top pushout square is given by the insertion ofT intoS alongP . Themorphism {Q}•ιS,P,T
through the middle of the diagram is then equal to {S�P Q}, allowing the bottom pushout
rectangle to be formed by the insertion of U into S�P T along S�P Q.

We can also consider the universal property of the tree generated by first inserting U into T ,
and then inserting the inserted tree into S, which is given by the diagram below:

Dn S

Dm T

U T �Q U S�P (T �Q U)

{P}

{Cn
T }

{Q}
{Cm

U } κT,Q,U

ιT,Q,U

κS,P,T ≪Q U

ιS,P,T ≪Q U

⌟⌟

The left-hand pushout square is given by the insertion of U into T along Q. The morphism
{CnT}•κT,Q,U which runs vertically through the centre of the diagram is then equal to {CnT ≪Q U}
by Corollary 3.4.38, allowing for the right-hand pushout square to be formed as the insertion
of T �Q U into S along P . By common properties of colimits, both of these constructions
then arise as colimits of the same diagram, the shared top left boundary of both constructions.
The results of this section are stated in the following lemma.

Lemma 3.4.41. Let (S, P, T) and (T,Q, U) be insertion points. Further assume T is not linear.
Then:

S�P (T �Q U) = (S�P T)�S≪P Q U

κS,P,T ≪Q U =max κS,P,T ◦ κS≪P T,S≪P Q,U

L�P (M�QN) ≡max (L�P M)�S≪P QN

for any L : S → U,M : T → U, and N : U → U.

Proof. See the functions insertion-tree-inserted-branch and label-from-inserted-branch in
the formalisation module Catt.Tree.Insertion.Properties, and κ-inserted-branch in module
Catt.Typing.Insertion.Equality.

145

https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#insertion-tree-inserted-branch
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html#label-from-inserted-branch
https://alexarice.github.io/catt-agda/Catt.Tree.Insertion.Properties.html
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html#22361
https://alexarice.github.io/catt-agda/Catt.Typing.Insertion.Equality.html

146

Chapter 4

Semistrict variants of Catt

The type theories Cattsu, a type theory for strictly unital∞-categories, and Cattsua, a type
theory for strictly unital and associative∞-categories, are introduced in this chapter, where
we will define both theories and explore some metatheory and properties of each type theory
in detail.

The results in this chapter will heavily depend on the theory developed in the previous chap-
ters. Both type theories will be defined as instances of CattR, which was introduced in Sec-
tion 2.2, and much of the initial metatheory can be immediately derived by demonstrating that
the equality rule sets that generate Cattsu and Cattsua satisfy the various conditions given in
Section 2.4. The theory Cattsu is primarily generated by pruning, which was introduced in
Section 3.1, and the theory Cattsua depends on the insertion operation, which was introduced
in Section 3.4.

Section 4.2 will introduce and define the Cattsu, and Section 4.3 will do the same for Cattsua.
The main contribution of these sections is to give normalisation algorithms for their respec-
tive theories, giving a notion of computation to each theory. A normalisation algorithm is a
function N : TermΓ → TermΓ with the following properties:

• For any term t : TermΓ, Γ ` N(t) = t.

• For any s, t : TermΓ with Γ ` s = t, N(s) ≡ N(t).

The term N(t) is called the normal form of t. Such an algorithm allows equality of two term s
and t to be decided by taking the normal form of each term and checking if they are syntacti-
cally equal. Normalisation can be extended to types and substitutions in a natural way.

In Sections 4.2 and 4.3, the normalisation algorithm is defined by giving a reduction system
on the syntax of the type theory, which we show to be terminating, meaning that there is no
infinite reduction sequence and confluent, meaning that any two reduction paths converge to
a common reduct. The normal form of a term can then be obtained by reducing it until there
are no further reductions possible. In Section 4.1, these notions are recalled, and we demon-
strate that the resulting normalisation algorithm satisfies the two properties stated above. This
section also introduces a method for obtaining a reduction system from an arbitrary equality
rule setR.

Such a normalisation procedure allows a type checking algorithm to be implemented, creating
an interpreter for the language. This allows us to write larger terms, and it can be automati-

147

cally verified whether they are well-formed. In Section 4.4, we introduce our implementation
of Catt, Cattsu, and Cattsua, written in rust. This implementation supports features such
as implicit arguments to terms, implicit suspension, and native support for trees and tree la-
bellings. We will explain how the tool can be used, and use it to give larger examples of
Cattsua terms, including proofs of Eckmann-Hilton (see Figure 1) and its higher-dimensional
coherence condition, the syllepsis.

The implementation uses an approach closer to normalisation by evaluation for typechecking
terms in the theory. Section 4.4 explores this algorithm and presents some perspectives on
applying normalisation by evaluation to semistrict versions of Catt.

Section 4.5 provides a discussion of the models of the semistrict type theories Cattsu and
Cattsua, demonstrating how they can be viewed as semistrict ∞-categories. The section
proves a partial conservativity result, which allows a proof that semistrictness is a property
of a weak∞-category, and not additional structure. A discussion is provided on some of the
challenges that must be overcome to extend this partial conservativity result.

The thesis ends with Section 4.6, which provides a review of avenues for future work in this
area, including a discussion of further variants of Catt which could be defined.

4.1 Reduction
Reduction is a method for defining computation for a type theory. For each term, a number of
reductions can be applied to it, representing the various computations that could be applied
to the term. Computation can then be run on a term by repeatedly searching for positions in
the term that admit a reduction, known as redexes, and applying this reduction, until no more
redexes exist in the term. When a term admits no reductions, it is called a normal form.

Definition 4.1.1. A reduction system is given by a relation s ⇝ t on terms. The relation
⇝∗ is defined to be the reflexive transitive closure of⇝, and so s⇝∗ t exactly when there
is some chain

s ≡ u0 ⇝ · · ·⇝ uk ≡ t

for k ∈ N (which could be 0 with s ≡ t) and terms ui for i ≤ k. Further define↭ to be the
reflexive symmetric transitive closure of⇝.

When a term s admits no reductions, that is there is no t such that s ⇝ t, we say it is in
normal form.

If we have an equality rule set R (see Section 2.4) that generates CattR, a reduction system
can be defined onRmodifying the rules for equality to remove the reflexivity, symmetry, and
transitivity constructors and ensure that reductions do not happen “in parallel”.

Definition 4.1.2. Let R be an equality rule set. Define the reduction system⇝R on well-
formed terms, well-formed substitutions, and well-formed types to be generated by the rules
in Figure 4.1. When it is clear which equality rule set is being used, we may simply write
s⇝ t instead of s⇝R t.

The rules for reduction are set up so that each reduction s⇝R t corresponds to the application
of exactly one rule from R at a single point in the term. Given a coherence Coh(∆ ;A)[σ], we

148

(Γ, s, t) ∈ R
s⇝R t

Rule
A⇝R B

Coh(∆ ;A)[σ]⇝R Coh(∆ ;B)[σ]
cell

σ ⇝R τ

Coh(∆ ;A)[σ] = Coh(∆ ;A)[τ]
aRg

s⇝R s′

s→A t⇝R s′ →A t

t⇝R t′

s→A t⇝R s→A t
′

A⇝R A′

s→A t⇝R s→A′ t

σ ⇝R τ

〈σ, s〉⇝R 〈τ, s〉
s⇝R t

〈σ, s〉⇝R 〈σ, t〉

Figure 4.1: Rules for⇝R.

call reductions generated by the cell rule cell reductions and reductions generated by the aRg
rule argument reductions. Reductions generated by Rule will be named by the rule in R that
was used. For example a reduction generated by Rule applied with an instance of pruning will
be called a pruning reduction.

We highlight that our reduction system ⇝R is only defined between well-formed pieces of
syntax. As this reduction will be used with rule sets R which satisfy the preservation condi-
tion, there will be no additional burden of checking that typing is preserved while applying
reductions. Therefore, we can prove that the reflexive symmetric transitive closure of reduc-
tion,↭R, is the same relation as equality on well-formed terms, given the similarity between
the rules for reduction and the rules for equality.

Proposition 4.1.3. Let R be a rule set satisfying the preservation, support, and substitution
conditions (such that the generated equality preserves typing). Letting↭R be the reflexive
symmetric transitive closure of⇝R, we get:

Γ ` s = t ⇐⇒ s↭R t

for s, t : TermΓ such that Γ ` s : A and Γ ` t : A for some A : TypeΓ

Γ ` A = B ⇐⇒ A↭R B

for A,B : TypeΓ such that Γ ` A and Γ ` B

Γ ` σ = τ ⇐⇒ σ↭R τ

for σ, τ : ∆→⋆ Γ such that Γ ` σ : ∆ and Γ ` τ : ∆.

Proof. Each direction can be proved separately by a mutual induction on the derivation in
the premise. For the right to left direction, it suffices to show that the single step reduction
(⇝R) is contained in the equality, as equality is an equivalence relation by construction.

149

Just as the preservation condition on a rule setR allows us to deduce that reduction preserves
typing, the substitution condition can be used to prove that reduction is preserved by applica-
tion of substitution.

Proposition 4.1.4. Suppose R satisfies the substitution condition and let σ : ∆ → Γ be a
well-formed substitution. Then:

s⇝R t =⇒ sJσK⇝R tJσK
A⇝R B =⇒ AJσK⇝R BJσK
τ ⇝R µ =⇒ τ • σ ⇝R µ • σ

for well-formed terms s, t, well-formed types A,B, and well-formed substitutions τ and µ.
Furthermore, if σ ⇝R τ , then:

sJσK⇝∗
R sJτK AJσK⇝∗

R AJτK µ • σ ⇝∗
R µ • τ

for term s, type A, and substitution µ.

Proof. Thefirst part by a simple induction on the reduction in the premise. The second holds
by a mutual induction on the term s, type A, and substitution µ.

4.1.1 Termination
In order to obtain a normal form of each term of the theory, we perform reductions on a term
until no more can be applied. This can only be done if we know that this will eventually result
in a normal form, a property known as strong termination.

Definition 4.1.5. A reduction system ⇝ is strongly terminating if there is no infinite se-
quence of reductions:

s0 ⇝ s1 ⇝ s2 ⇝ · · ·
For such a reduction, applying reductions to a term will eventually reach a normal form.

Demonstrating the termination of the reduction systems defined in Sections 4.2 and 4.3 will
be non-trivial, as each reduction adds new constructions to the term, which could themselves
admit reductions. Suppose we have the following reduction due to endo-coherence removal
(see Section 2.4.3):

Coh(∆ ; s→As)[σ]⇝ id(AJσK, sJσK)
The identity term was not present in the premise of the reduction, and the term sJσK is newly
created by the reduction, and could itself admit any number of reductions.

To prove termination, wewill exploit that although each reduction creates new subterms, these
subterms are all of a lower dimension than the dimension of the term that is being reduced. In
the example above, the dimension of Coh(∆ ; s→As)[σ] is greater than the dimension of the term
s, and so the reduction has still made progress towards a normal form by decreasing the com-
plexity of the term in dimension dim(A), even though it may introduce arbitrary complexity
below dim(A).

150

To this endwe define the following notion of complexity for each class of syntax, which assigns
an ordinal number to each term, which we call its syntactic complexity. As the ordinal numbers
are well-founded, we aim to prove that our reduction is terminating by proving that each
single-step reduction reduces the complexity of the term. To define syntactic complexity, we
will need to use ordinal numbers up to ωω. We will also need a construction known as the
natural sum of ordinals, α # β, which is associative, commutative, and strictly monotone in
both of its arguments [Lip16].

Definition 4.1.6. For all terms t, typesA, and substitutions σ, the syntactic complexity sc(t),
sc(A), and sc(σ) are mutually defined as follows:

• For types:
sc(⋆) = 0 sc(s→A t) = sc(s) # sc(A) # sc(t)

• For substitutions we have:

sc(〈t0, . . . , tn〉) =
n

#
i=0

ti

• For terms, we have sc(x) = 0 for variables x and for coherences we have:

sc(Coh(∆ ;A)[σ]) =

{
ωdim(A) # sc(σ) if Coh(∆ ;A)[σ] is an identity
2ωdim(A) # sc(σ) otherwise

The syntactic complexity is given as an ordinal to leverage known results, though it should be
noted that ordinals below ωω can be represented by a list of natural numbers ordered reverse
lexicographically. Under this interpretation the syntactic complexity effectively computes the
number of coherences at each dimension. Therefore, removing a coherence of dimension n
reduces the complexity, even if arbitrary complexity is added at lower dimensions. Syntac-
tic complexity also treats identities in a special way, as these play a special role in blocking
reduction for the theories presented in this chapter.

The syntactic complexity does not account for the type in a coherence, as this is difficult to
encode. Instead of showing that all reductions reduce syntactic complexity, we instead show
that all reductions which are not cell reductions (reductions that have the rule marked cell in
their derivation) reduce syntactic complexity and deduce that a hypothetical infinite reduction
sequence must only consist of cell reductions after a finite number of steps, and then appeal
to an induction on dimension.

Lemma 4.1.7. Let R be an equality set with sc(s) > sc(t) for all (Γ, s, t) ∈ R. Then⇝R is
strongly terminating.

Proof. By a simple induction on reductions, we immediately have that if s ⇝R t then
sc(s) ≥ sc(t), with the inequality strict when the reduction is not a cell reduction. We then
proceed by induction on the dimension. Suppose there is an infinite reduction sequence,
starting with a k-dimensional term:

s0 ⇝ s1 ⇝ s2 ⇝ · · ·

151

Then by assumption, only finitely many of these reductions do not use the cell rule, as
otherwise we would obtain an infinite chain of ordinals

sc(s0) ≥ sc(s1) ≥ sc(s2) ≥ · · ·

where infinitely many of these inequalities are strict. Therefore, there is an n such that:

sn ⇝ sn+1 ⇝ · · ·

are all cell reductions. Each of these reductions reduces one of finitely many subterms of
sn, and each of these subterms has dimension less than k, so by inductive hypothesis, none
of these subterms can be reduced infinitely often, contradicting the existence of an infinite
reduction sequence.

We can immediately prove that disc removal reduces syntactic complexity.

Proposition 4.1.8. Let s⇝ t be an instance of disc removal. Then sc(s) > sc(t).

Proof. We must have s ≡ Coh(Dn ;wk(Un))[{A, t}] for some n and A. Then:

sc(s) = sc(Coh(Dn ;wk(Un))[{A, t}])
= 2ωn # sc({A, t})
> sc({A, t})
≥ sc(t)

where the last inequality holds by a simple induction on the dimension of A.

We note that as stated so far the reduction:
id(A, s)⇝ id(A, s)

is a valid instance of endo-coherence removal for type A and term s, which will break termi-
nation. We therefore let ecr′ be the equality rule set obtained by removing all triples (Γ, s, t)
from ecr where s is already an identity. We justify replacing ecr by ecr’ with the following
lemma.

Lemma 4.1.9. The following reduction holds, even when the left-hand side is an identity:

Coh(∆ ; s→As)[σ]⇝∗
ecr′ id(AJσK, sJσK)

Proof. If Coh(∆ ; s→As)[σ] is not an identity then it can be reduced by endo-coherence re-
moval. Otherwise, we have ∆ = Dn for some n, s ≡ dn, A ≡ wk(Un), and σ ≡ {B, t} for
some B and t and so:

id(AJσK, sJσK) ≡ id(wk(Un)J{B, t}K, dnJ{B, t}K) ≡ id(B, t)

It follows that the reduction is trivial.

It can then be proven that the reductions in this set reduce syntactic complexity.

152

Proposition 4.1.10. Let s⇝ t be an instance of endo-coherence removal. If s is not an identity
then sc(s) > sc(t).

Proof. As s ⇝ t is an instance of endo-coherence removal, we must have s ≡
Coh(∆ ;u→Au)[σ] and t ≡ id(AJσK, uJσK). Further, s is not an identity and so:

sc(s) = sc(Coh(∆ ;u→Au)[σ])

= 2ωdim(A)+1 # sc(σ)
≥ 2ωdim(A)+1

< ωdim(A)+1 # sc(AJσK) # sc(uJσK) = sc(id(AJσK, uJσK))
= sc(t)

where the last inequality holds as sc(AJσK) # sc(uJσK) < ωdim(A)+1 due to both AJσK and
uJσK having the same dimension as dim(A), meaning that their syntactic complexities are
strictly bounded by ωdim(A)+1.

4.1.2 Confluence
Another crucial property of reduction systems is confluence. A term s may have any number
of redexes and could reduce to distinct terms t and u. Confluence states that both the terms
t and u must reduce to some common term, allowing us to apply reductions to a term in any
order.

Definition 4.1.11. Let⇝ be a reduction system. It is (globally) confluent if for all terms s,t,
and u with s ⇝∗ t and s ⇝∗ u, there is a term v such that t ⇝∗ v and t ⇝∗ v. This can be
assembled into the following diagram:

s

t u

v

∗∗

∗ ∗

and hence is sometimes called the diamond property for⇝∗.

From global confluence, it is clear that if s ↭R t, where↭R is the reflexive symmetric
transitive closure of⇝R, then there is u with s⇝∗

R u and t⇝∗
R u. It is sometimes simpler to

show that the following weaker confluence property holds:

Definition 4.1.12. Let⇝ be a reduction system. It is locally confluent if given s ⇝ t and

153

s⇝ u there exists a term v such that:

s

t u

v
∗ ∗

that is t⇝∗ v and u⇝∗ v.

Global confluence trivially implies local confluence. If we further know that the reduction
system ⇝ is strongly terminating then local confluence is sufficient to show global conflu-
ence.

Lemma 4.1.13 (Newman’s lemma [NH42]). Let⇝ be strongly terminating and locally con-
fluent. Then⇝ is globally confluent.

Local confluence for the reduction systems of the type theories Cattsu and Cattsua will be
proved using critical pair analysis. A critical pair is a pair of distinct reductions which apply
to the same term. When analysing the critical pairs of our semistrict type theories, we will
encounter terms that are structurally similar, but differ on lower-dimensional subterms up to
equality. We define this precisely.

Definition 4.1.14. LetR be an equality rule set. For n ∈ N, define the bounded equality set
Rn as:

Rn = {(Γ, s, t) ∈ R | dim(s) = dim(t) < n}

Let the bounded equality relation s =n t be the equality generated by the setRn.

This is used to prove the following lemma, which implies that for a critical pair t ⇝s⇝ u it
is not necessary to find a common reduct of t and u, but simply find reducts t′ and u′ of t and
u such that t′ =dim(s) u

′.

Lemma 4.1.15. Let R be a tame equality rule set which satisfies the preservation and sup-
port conditions, and further assume that ⇝R is strongly terminating. Suppose the following
diagram can be formed:

s

t u

t′ =dim(s) u
′

∗ ∗

for all critical pairs t ⇝R s⇝R u such that s⇝R t is derived using Rule.

Then⇝R is confluent.

154

Proof. By Lemma 4.1.13, it suffices to show local confluence. We proceed by strong induction
on n and s, proving that all critical pairs t ⇝Rn s⇝Rn u have a common reduct, assuming
that all critical pairs t ⇝Rm s′ ⇝Rm u have a common reduct, where s′ is a subterm of s or
m < n. We justify this induction principle by noting that for all subterms s′ of s we have
dim(s′) ≤ dim(s).

We now consider critical pair t ⇝Rn s ⇝Rn u. We first suppose that s ⇝Rn t is derived
from Rule. Then, by definition of the set Rn, we must have that n > dim(s). By the
assumption of the lemma, there exist t′ and u′ with t′ =dim(s) u

′ and t ⇝∗
R t′ and u ⇝∗

R u′.
As n > dim(s), we further have that t⇝∗

Rn
t′ and u⇝∗

Rn
u′.

By Proposition 4.1.3, t′↭Rdim(s)
u′, and so as⇝Rdim(s)

is confluent by inductive hypothesis
on dimension we have v such that t′ ⇝∗

Rdim(s)
v ⇝∗Rdim(s)

u′. The following diagram can
therefore be formed, where all the reductions areRn reductions (noting thatRdim(s) ⊆ Rn):

s

t u

t′ u′

v

∗ ∗

∗ ∗

If s ⇝Rn u was derived from Rule, then finding a reduct can be found similarly to the
first case by symmetry. We therefore consider the cases where neither s ⇝ t nor s ⇝ u
are derived using Rule. Both reductions must be either cell or argument reductions, and
so each reduces some subterm of s. If they reduce distinct subterms of s, then a common
reduct v can be formed by applying both reductions to s. Otherwise, both reductions act
on the same subterm of s, and a common reduct can be found by applying the inductive
hypothesis for subterms.

Once termination and confluence have been proven, a normalisation function can be defined,
which repeatedly applies reductions until no more can be applied.

Lemma 4.1.16. Suppose that ⇝ is strongly terminating and confluent. Then every term s
reduces to a unique normal form N(s). Furthermore, if s↭R t, then N(s) ≡ N(t).

Proof. By termination, repeatedly reducing a termwill reach a normal form. Suppose a term
s has two normal forms t and u such that there are reduction sequences s⇝∗ t and s⇝∗ u.
Then by confluence there must be a term v with t⇝∗ v and u⇝∗ u. However, t and u are
normal forms and so admit no reductions, so t ≡ v ≡ u as required.

Suppose s↭R t. Then there are terms si such that:

s ≡ s0 ⇝∗ s1 ⇝∗ s2 ⇝∗ · · · ⇝∗ sk ≡ t

Now we must have N(si) ≡ N(si+1) for each i as if si ⇝∗ si+1 then both N(si) and N(si+1)

155

are normal forms of si and if si ⇝∗ si+1 then both are normal forms of si+1. Therefore, N(s)
and N(t) are syntactically equal as required.

Corollary 4.1.17. LetR be tame and satisfy the preservation and support properties. Further,
suppose that ⇝R is strongly terminating and confluent, and it is decidable whether a term
admits a reduction. Then the equality s = t is decidable.

Proof. By Proposition 4.1.3, s = t if and only if s↭R t. By the above lemma, s↭R t if
and only if N(s) ≡ N(t). As syntactic equality is clearly decidable, and normal forms can
be computed, equality is also decidable.

We note that for an arbitrary rule set R, it may not be decidable whether a specific term s
admits a reduction, but for the rule sets introduced in Sections 4.2 and 4.3, it will be easy to
mechanically check whether any reduction applies to a term s.

4.2 Cattsu

We are ready to define Cattsu, the type theory for strictly unital ∞-categories. Cattsu is a
variant of CattR for which the equality is built from three classes of equalities:

• Pruning: The pruning operation was introduced in Section 3.1. Pruning is the key op-
eration in Cattsu and drives the strict unitality of the theory. The operation “prunes”
identities that appear as locally maximal arguments to other terms, simplifying the over-
all structure of a term by removing unnecessary units.

• Endo-coherence removal: This operation was introduced in Section 2.4.3, and converts
“fake identities”, terms which are morally identities yet have the wrong syntactic form,
into true identities. These converted identities can then be further removed from terms
by pruning.

• Disc removal: Disc removal was the running example from Section 2.2, and removes
unary composites from the theory. Commonly after pruning, a composite is reduced to
a unary composite, for which disc removal is necessary to complete the simplification
of the term.

In this section we will prove that Cattsu is a type theory satisfying many standard meta-
theoretic properties by combining results from previous chapters. We also give a reduction
system for Cattsu and show that this is strongly terminating and confluent.

Example 4.2.1. Suppose we have terms f : x→⋆ y, g : y →⋆ z, h : x→⋆ z, and α : f ∗g → h
in some context Γ. We can then consider the term:

Coh((x:∗),(y:∗),(f :x→⋆y),(z:⋆),(g:y→⋆z) ; f∗g→f∗g)[〈x, y, f, z, g〉] ∗ α

which consists of an endo-coherence composed with the variable α. This then reduces as

156

follows:

Coh((x:∗),(y:∗),(f :x→⋆y),(z:⋆),(g:y→⋆z) ; f∗g→f∗g)[〈f, g〉] ∗ α
⇝ id(x→⋆ z, f ∗ g) ∗ α by endo-coherence removal
⇝ Coh(D2 ;wk(U2))[〈x, z, f ∗ g, h, α〉] by pruning
⇝ α by disc removal

and so uses all three reductions to fully simplify to a variable.

We define Cattsu by the following equality rule set.

Definition 4.2.2. Define the equality rule set su for Cattsu by:

su = dr ∪ prune ∪ ecr

Cattsu is then the variant of CattR whereR = su.

When it is not specified, we will assume that the operation set O is given by the regular
operation set Reg.

Theorem 4.2.3. The rule set su is tame and satisfies the support and preservation conditions.

Proof. By Propositions 2.4.10, 2.4.13, and 2.4.19, disc removal satisfies the weakening, sus-
pension, and su-substitution conditions. Endo-coherence removal and pruning satisfy the
same conditions by Propositions 2.4.37 and 3.1.17. As these conditions are closed under
unions, the set su must also satisfy the weakening, suspension, and substitution conditions,
and hence is tame.

We now use the proof strategy introduced in Section 2.4.2 to prove that su satisfies the
support condition. Firstly, by Lemma 2.4.30 we know that sus is also tame. Disc removal
then satisfies the sus-support condition by Proposition 2.4.31. The same condition is satisfied
by endo-coherence removal (Lemma 2.4.37(iv)) and pruning (Proposition 3.1.19) and so su
satisfies the sus-support condition. By Lemma 2.4.28, su satisfies the support condition.

Lastly, su satisfies the su-preservation condition as it is satisfied by disc removal (Propo-
sition 2.4.34), endo-coherence removal (Lemma 2.4.37(v)), and pruning (Proposition 3.1.21)
and is closed under unions of rule sets.

From this theorem it can be deduced that weakening, suspension, and applications of substi-
tution are well-formed. Furthermore, equality in Cattsu preserves the support of a term and
preserves typing judgements. Such results are found in Section 2.4.

Before giving normalisation results for Cattsu, we recall the Eckmann-Hilton argument (Fig-
ure 1) and give the definition of the term giving this equivalence. First let∆ be the ps-context

157

given by:

∆ = D2 ∧D2 = (x : ∗),
(y : ∗), (f : x→ y),

(g : x→ y), (a : f → g),

(z : ∗), (h : x→ y),

(j : x→ y), (b : h→ j)

which is given by the diagram:

• • •

g

f h

i

a b

The following term can be formed, which is similar to an interchange move, and changes the
order in which two whiskered terms are composed:

swap = Coh(∆ ; (a∗0j)∗1(g∗0b)→(f∗0b)∗1(a∗0h))[id∆]

Then given a context Γ with terms x : ∗ and α, β : id(x) → id(x), the following term, the
Eckmann-Hilton term, can be formed:

EHα,β = swapJ〈x, x, id(x), id(x), α, x, id(x), id(x), β〉K
In Cattsu, this term can be typed as follows:

Γ ` EHα,β : α ∗1 β → β ∗1 α

and so witnesses the Eckmann-Hilton argument.

We note that there is a clear inverse of the Eckmann Hilton term, which immediately gives
rise to two morphisms α ∗1 β → β ∗1 α: the original term EHα,β and the term EH−1

β,α. These
two terms manoeuvre α and β round each other in opposite directions, and are not in general
equivalent.

However, we can instead apply Eckmann-Hilton to terms ϕ and ψ of type id2(x) → id2(x),
which is done by suspending the Eckmann-Hilton term. By an abuse of notation we define
this term to be (only giving the locally maximal arguments of the substitution):

EHϕ,ψ = Σ(swap)J〈ϕ, ψ〉K
In this case, the extra dimension gives enough freedom to give an equivalence between the
resulting two terms ϕ ∗2 ψ → ψ ∗2 ϕ which is called the syllepsis and has the type:

Sylϕ,ψ : EHϕ,ψ → EH−1
ψ,ϕ

To define this term, a similar approach to the approach used for Eckmann-Hilton of giving
a single coherence containing a more complex type and a substitution containing multiple
identity terms, and letting the Cattsu reduction simplify the type to the required one. We
delay defining this term until Section 4.4, where the implementation presented in this section
can be used to check that the resulting term is well-formed.

158

4.2.1 Normalisation for Cattsu

Following Section 4.1 we aim to give a normalisation algorithm for Cattsu by exhibiting a
strongly terminating and confluent reduction system.

The reduction system⇝su cannot be used directly because the reduction generated from ecr is
not terminating, as it allows identities to reduce to identities. Even after replacing the equal-
ity rule set ecr by ecr’, the equality set obtained by removing these trivial identity to iden-
tity reductions from ecr, the generated reduction is still non-terminating. Consider the term
id(t→A t, id(A, t)) for some term t of type A. Then the following reduction sequence can be
formed:

id(t→A t, id(A, t))⇝ Coh(Dn ; id(wk(Un),dn)→id(wk(Un),dn))[{A, t}]⇝ id(t→A t, id(A, t))

where n = dim(A), the first reduction is by pruning, and the second reduction is by endo-
coherence removal. We therefore choose to also restrict the pruning equality rule set to not
apply when the head term is an identity, obtaining the set prune’. We can now define the
reduction system for Cattsu.

Definition 4.2.4. Define the reduction⇝su′ to be the reduction generated by the equality
rule set su′ where

su′ = dr ∪ prune′ ∪ ecr′

where ecr’ is the endo-coherence removal set without identity to identity equalities and
prune’ is the pruning set restricted to the triples where the left-hand side term is not an
identity.

The reduction⇝su′ applies equality rules from Cattsu when the redex is not an identity, ef-
fectively forcing identities to be normal forms of the theory. As applying a substitution to or
suspending a non-identity term cannot result in an identity, it is clear that su’ is tame. Strong
termination for⇝su′ can now be proven using Lemma 4.1.7, by showing that all rules reduce
the syntactic complexity of terms.

Proposition 4.2.5. Let s ⇝ t be an instance of pruning. If s is not an identity then sc(s) >
sc(t).

Proof. The reduction s ⇝ t is an instance of pruning, and so there must be Dyck word
D : Dyck0, and peak p : PeakD such that

s ≡ Coh(⌊D⌋ ;A)[σ] t ≡ Coh(⌊D�p⌋ ;AJπpK)[σ � p]

where s is not an identity and bpcJσK is. We then have sc(s) = sc(σ) and sc(t) = sc(σ � p),
but σ � p is simply σ with two terms removed, one of which is known to be a coherence,
and so sc(s) > sc(t).

Corollary 4.2.6. The reduction⇝su′ is strongly terminating.

Proof. By Lemma 4.1.7, it suffices to show that each rule of su′ reduces syntactic complexity,
which follows from the preceding proposition and Propositions 4.1.8 and 4.1.10.

159

By Proposition 4.1.3, we know that the reflexive symmetric transitive closure of ⇝su′ is the
equality relation generated by su’. We therefore prove that this agrees with the equality rela-
tion from Cattsu.

Proposition 4.2.7. The type theories generated from su and su’ are equivalent. Terms are
equal or well-formed in one theory exactly when they are equal or well-formed in the other,
and similar properties hold for types and substitutions.

Proof. We use Lemma 2.4.2 for both directions. Since su′ ⊆ su, we are only required to show
that if (Γ, s, t) ∈ su with Γ `su′ s : A for some A : TypeΓ then

Γ `su′ s = t

If (Γ, s, t) ∈ su′, then the equality follows from the Rule constructor. Otherwise, s must be
an identity and the rule is an instance of endo-coherence removal or pruning. Suppose s
reduces to t by endo-coherence removal. Then s ≡ id(A, u) and

t ≡ id(wk(Un)J{A, u}K, dnJ{A, u}K) ≡ id(A, u) ≡ s

and so the equality holds by reflexivity.

Now assume s reduces by pruning to t. Letting s ≡ id(A, u) and n = dim(A), we get:

t ≡ Coh(⌊Dn�pn⌋ ; dn→wk(Un)dnJπpnK)[{A, u} � p]

= id(wk(Un)JπpnKJ{A, u} � pnK, dnJπpnKJ{A, u} � pnK) by endo-coherence removal
≡ id(wk(Un), dn)Jπpn • {A, u} � pnK
= id(wk(Un), dn)J{A, u}K by Proposition 3.1.15
≡ id(wk(Un)J{A, u}K, dnJ{A, u}K)
≡ id(A, u)

and so the equality holds as required.

We therefore have that two terms s and t are equal in Cattsu if and only if s ↭su′ t. To
demonstrate normalisation, it therefore remains to show that the reduction system is confluent,
for which we employ the strategy introduced in Lemma 4.1.15.

Theorem 4.2.8. The reduction⇝su′ is confluent.

Proof. By Lemma 4.1.15 it is sufficient to show that for all t ⇝s ⇝ u with s ⇝ t being a
reduction derived from Rule, that the following diagram can be formed:

s

t u

t′ =dim(s) u
′

∗ ∗

160

We therefore begin by case splitting on the reduction s ⇝ t, ignoring cases where both
reductions are identical and ignoring cases which follow by symmetry of other cases.

Disc removal: Suppose s⇝ t is a disc removal reduction. Then s ≡ Coh(Dn ;wk(Un))[{A, t}].
We now split on the reduction s ⇝ u. We immediately know that s ⇝ u cannot be an
endo-coherence removal reduction, as s is not an endo-coherence. It also cannot be a cell
reduction as wk(Un) only contains variables and so is in normal form.

Let s ⇝ u be an argument reduction. It must therefore be generated by a reduction on
{A, t}. If it is a reduction generated by A ⇝ A′ then u ⇝ t by endo-coherence removal
and so we are done. Otherwise, it is generated by t⇝ t′ and so t and u both reduce by disc
removal to t′.

The only remaining case is where s⇝ u is an instance of pruning, which forces t ≡ id(B, a)
for some B and a. As s is well-formed, we must have n > 0 and so A ≡ b→A′ c. Therefore:

u ≡ Coh(⌊Dn�p⌋ ;wk(Un)JπpK)[{A, id(B, a)} � p]

≡ Coh(Dn−1 ;wk(Un)J{dn−1→wk(Un−1)dn−1,id(wk(Un−1),dn−1)}}K)[{A′, b}] by Proposition 3.1.16
≡ Coh(Dn−1 ; dn−1→wk(Un−1)dn−1)[{A′, b}]

≡ id(A′, b)

Now as s is well-formed we have Γ ` {A, id(B, a)} : Dn and so by Lemma 2.4.8, we have
Γ ` id(B, a) : A and hence by Corollary 2.4.9 and uniqueness of typing:

a→B a = A ≡ b→A′ c

and so a = b and B = A′ and hence s ≡ id(A′, b) = id(B, a) ≡ t. Since dim(a) =
dim(B) < dim(s), we get t =dim(s) u as required.

Endo coherence removal: Suppose s⇝ t is an endo-coherence removal reduction. Then:

s ≡ Coh(∆ ; a→Aa)[σ]⇝ id(AJσK, aJσK) ≡ t

with s not being an identity. We now split on the reduction s ⇝ u. First consider when
it is an argument reduction generated by σ ⇝ τ . Then by Proposition 4.1.4, we have
t ≡ id(AJσK, aJσK) ⇝∗ id(AJτK, aJτK). By endo-coherence removal, u ⇝ id(AJτK, aJτK),
completing this case.

Now suppose the reduction s ⇝ u is an instance of cell reduction. If it is generated from
a reduction A ⇝ B then by Proposition 4.1.4, t ⇝ id(BJσK, aJσK) and by endo-coherence
removal:

u ≡ Coh(∆ ; a→Ba)[σ]⇝ id(BJσK, aJσK)
We now consider when the reduction is generated by a→A a ⇝ b→A a, with the case
where it is generated by a→A a ⇝ a→A b following symmetrically. We consider the
reductions sequence from u:

u ≡ Coh(∆ ; b→Aa)[σ]

⇝ Coh(∆ ; b→Ab)[σ] by cell reduction
⇝ id(AJσK, bJσK) by endo-coherence removal

161

Again by Proposition 4.1.4, t ≡ id(AJσK, aJσK)⇝ id(AJσK, bJσK), completing the case.

Lastly, we consider when s⇝ u is a pruning reduction. We suppose ∆ = bDc and that the
pruning is generated from peak p : D. Then:

u ≡ Coh(⌊D�p⌋ ; (a→Aa)JπpK)[σ � p]

Then:

u⇝ id(AJπpKJσ � pK, aJπpKJσ � pK) by Lemma 4.1.9
≡ id(A, a)Jπp • σ � pK
=dim(s) id(A, a)JσK

where the last (bounded) equality is by Proposition 3.1.15 and by noting that dim(A) =
dim(a) < dim(s).

Pruning: Let s⇝ t be a reduction by pruning with

s ≡ Coh(⌊D⌋ ;A)[σ]

for some D : Dyck0 with peak p : PeakD such that bpcJσK is an identity. Then:

t ≡ Coh(⌊D�p⌋ ;AJπpK)[σ � p]

We now split on the reduction s ⇝ u. First suppose it is given by an argument reduction
σ ⇝ τ . Identities do not admit head reductions, meaning bpcJτK is still an identity. There-
fore, pruning can be applied to u to get:

u⇝ Coh(⌊D�p⌋ ;AJπpK)[τ � p]

Now σ � p is simply σ with two terms removed, and so σ � p⇝∗ τ � p, meaning t reduces
to the same term as u.

If s⇝ u is a cell reduction A⇝ B, then pruning can be applied to u immediately to get the
term:

Coh(⌊D�p⌋ ;BJπpK)[σ � p]

but t also reduces to this term by Proposition 4.1.4.

Let s ⇝ u be a second pruning reduction, at a different peak q : PeakD. By Proposi-
tion 3.1.22, there is a common reduct:

Coh(⌊(D�p)�qp⌋ ;AJπpKJπqpK)[(σ � p) � qp]

which both reduce to by pruning if bqpc and bpqc are identities. However:

bqpc ≡ bqcJπpK
and bqc must be an identity for s ⇝ u to be a valid instance of pruning. Therefore, as
identities are preserved by application of substitution, bqpc is an identity. Similarly, bpqc is
an identity, and so both t and u reduce to the term above.

Any remaining cases follow by symmetry, completing the proof.

162

4.2.2 Disc trivialisation
We take a brief moment to explore the theory Cattsu in its entirety. For this section we will
further assume that we take the set of operations O to be the regular operations.

We begin by proving a property of terms over disc contexts, which we call disc trivialisation.
This is the following structure theorem: in a disc context Dn, every term is either a variable,
or the iterated identity on a variable, up to definitional equality. Restricting to those terms
t : TermDn that are full, that is Supp(t) = VarDn, then there is exactly one term (up to
definitional equality) at each dimension k ≥ n. Hence, the type theory Cattsu trivialises disc
contexts.

This property relates the type theory Cattsu to the definition of strictly unital∞-categories of
Batanin, Cisinski, and Weber [BCW13], whose reduced operads enforce that there is a unique
term of each dimension over a linear tree.

We now state and prove disc trivialisation, recalling the definition of an iterated canonical
identity from Definition 2.2.8.

Theorem 4.2.9 (Disc trivialisation). Suppose Dn ` t : A in Cattsu. Then t is equal to an
iterated canonical identity on a variable, that is t = idk(x) for some variable x ∈ Var(Dn)
and k ∈ N.

Proof. Without loss of generality, we may assume that t is in Cattsu normal form, and pro-
ceed to prove that t is an iterated canonical identity. We proceed by induction on subterms
of the term t. If t is a variable then we are done. Otherwise, we assume t is a coherence
term Coh(∆ ;U)[σ].

We now show that∆must be a disc context by contradiction. We therefore assume that∆ is
not a disc, and hence t is not an identity. By induction on subterms, we must have that each
term in σ is an iterated canonical identity on a variable. No locally maximal argument can
be an identity, as otherwise pruning could be performed and twould not be in normal form,
and so every locally maximal argument is a variable. Suppose there is some variable x such
that xJσK is an identity, and let x be a variable of maximal dimension with this property. As
x cannot be locally maximal, there must either be the source or target of a variable y, but
this variable y must be sent to a variable ofDn, which cannot have an identity as its source
or target. Therefore, the substitution σ is variable to variable.

We now let Γ be the smallest ps-context prefix of∆ such that Γ is not a disc. We must have:

Γ ≡ Dk, (y : A), (f : x→A y)

where Dk `ps x : A. Furthermore, the last rule used in this derivation must be psd, as if it
were pse or pss then k = dim(A) and Γ ≡ Dk+1, breaking the assumption that Γ is not a
disc. Therefore, Dk `ps g : w →A x for some variables g and x. However, now gJσK, xJσK,
and fJσK are variables of Dn such that tgt(gJσK) ≡ xJσK ≡ src(fJσK). No such variables
exist in Dn and so we reach a contradiction. We therefore deduce that ∆ is a disc Dn for
some n.

Now t ≡ Coh(Dn ;u→Av)[σ] and so by induction on subterms, u and v are equal to iterated
canonical identities. We now split on whether t is a composition or equivalence. If it is a

163

composition then Supp(u) = ∂−n−1(D
n) and Supp(v) = ∂+n−1(D

n) and therefore neither u
or v are identities (as then A would have the same support as u or v respectively) and so
u = d−n−1 and v = d∗n−1, but this makes t a disc removal redex, and so t is not in normal
form.

We therefore assume that t is an equivalence and u and v are full. Then u and v must be
iterated identities on dn, and must have the same dimension and so are syntactically equal.
To avoid t being an endo-coherence removal redex, it must be an identity id(B, s). Now,
s ≡ idk(x) for some variable x (as s is a subterm of t), and so if k = 0 then Ty(s) ≡ d−n−1 →
d+n−1 and if k > 0 then Ty(s) ≡ idk−1(x) → idk−1(x). In either case, Ty(s) is in normal
form, and so since B is also a normal form and Γ ` s : B (by the well-typing of t and
Corollary 2.4.9), we have B ≡ Ty(s) and so t ≡ id(s) ≡ idk+1(x) as required.

Disc trivialisation allows us to prove the following results concerning terms and substitutions
in pasting diagrams.

Theorem 4.2.10. Let D be a Dyck word. Let t be a well-formed Cattsu term of bDc. Then
Supp(t) is a ps-context.

Proof. Suppose, for contradiction, that we have a Dyck word D and a term t where Supp(t)
is not a ps-context. Assume further that D is minimal (in terms of length) where such a
term exists.

Immediately, D 6≡ ⊖, as all terms have non-empty support. We now examine the locally
maximal variables of D. There must exist some locally maximal variable f : x → y such
that f 6∈ Supp(t), as otherwise Supp(t) = Var(bDc).

Now suppose that y 6∈ Supp(t). Then we let p be the peak corresponding to f and consider
the term:

tJπpK : Term⌊D�p⌋
Then Supp(tJπpK) = Supp(t), which contradicts the minimality ofD. By a similar argument,
xmust also be in Supp(t). It is also the case that if such a variable f : x→ ywith f 6∈ Supp(t)
and {x, y} ⊆ Supp(t) exists, then Supp(t) cannot be a ps-context, by an argument involving
the linear order on ps-contexts introduced by Finster and Mimram [FM17].

Now supposeD has a peak p that is not f . Then fJπpK : xJπpK→ yJπpK is a locally maximal
variable of bD � pc with fJπpK 6∈ Supp(tJπpK) and {xJπpK, yJπpK} ⊆ Supp(tJπpK). Hence,
Supp(tJπpK) is not a ps-context, again breaking the minimality of D.

Therefore,D has one peak, and so bDc ≡ Dn for some n. Now byTheorem 4.2.9, t is Cattsu

equal to a variable z or an iterated identity on a variable z. Since Cattsu preserves support,
we must have Supp(t) = Supp(z), but Supp(z) is a disc and so is a ps-context.

Hence, no such term t existed.

Since any Catt term is also a Cattsu term, we get the following corollary.

Corollary 4.2.11. If Γ ` t : A in Catt, and Γ is a ps-context, then Supp(t) is a ps-context.

164

4.3 Cattsua

We now move on to defining Cattsua, the type theory for strictly unital and associative ∞-
categories. Cattsua extends Cattsu by replacing the pruning equality with the more general
insertion equality, which was introduced in Section 3.4. Under certain conditions, insertion
can merge more complex terms into a single coherence. As an example, the term (f ∗ g) ∗ h,
which is a composite which has a composite as one of its arguments, is reduced by insertion
to the ternary composite f ∗ g ∗ h, reducing the height of the term.

As we did for Cattsu, we will prove in this section that Cattsua satisfies standard meta-
theoretic properties, and provide a reduction system for it which is strongly terminating and
confluent.

Example 4.3.1. We consider the associator term, and its reductions in Cattsua. The associator
witnesses the associativity law in a weak∞-category. Letting∆ be the following ps-context:

∆ = b[[], [], []]c = (w : ∗)
(x : ∗) (f : w → x)

(y : ∗) (g : x→ y)

(z : ∗) (h : y → z)

we can define the associator as:

α = Coh(∆ ; (f∗g)∗h→f∗(g∗h))[id∆]

This then admits the following reduction sequence in Cattsua:

α⇝ Coh(∆ ; f∗g∗h→f∗(g∗h))[id∆] by insertion
⇝ Coh(∆ ; f∗g∗h→f∗g∗h)[id∆] by insertion
⇝ id(f ∗ g ∗ h) by endo-coherence removal

We formally define Cattsua as the version of CattR generated by the rule set sua, which we
define below:

Definition 4.3.2. We define the equality rule set sua for Cattsua by:

sua = dr ∪ ecr ∪ insert

Cattsua is then the variant of CattR whereR = sua.

As before, when we do not specify an operation set, it should be assumed that the regular
operation set is used. When we use the groupoidal operation set, we refer to the resulting
theory as groupoidal Cattsua.

Theorem 4.3.3. The rule set sua is tame and satisfies the support condition. If O supports
insertion, then sua also satisfies the preservation condition.

165

Proof. By Propositions 2.4.10, 2.4.13, 2.4.19, 2.4.37, and 3.4.17, each of the disc removal,
endo-coherence removal, and insertion sets satisfy the weakening, suspension, and sua-
substitution conditions. It follows that sua satisfies the weakening, suspension, and substi-
tution conditions. Hence, sua is tame.

To prove that the support condition holds for sua, we use the strategy introduced in Sec-
tion 2.4.2 and instead show that sua satisfies the suaS-support condition. By Lemma 2.4.30,
the equality rule set suaS, the restriction of sua to support preserving equalities, is also
tame. As it trivially satisfies the support condition, we have by Propositions 2.4.31 and 3.4.19
and Lemma 2.4.37(iv) that disc removal, endo-coherence removal, and insertion satisfy
the suaS-support condition. Therefore, sua satisfies the suaS-support condition and so by
Lemma 2.4.28 sua satisfies the support condition.

The sua-preservation condition is satisfied by disc removal (by Proposition 2.4.34) and endo-
coherence removal (by Lemma 2.4.37(v)). If O supports insertion, then insertion also satis-
fies the sua-preservation condition by Proposition 3.4.21. Therefore, sua satisfies the preser-
vation condition, completing the proof.

While the groupoidal operation set trivially supports insertion, we have not yet proven that
the regular operation set, Reg, supports insertion. This is done now usingTheorem 4.3.3.

Proposition 4.3.4. The regular operation set, Reg, supports insertion.

Proof. Using that the regular operation set is equal to the standard operation set, we instead
prove that the standard operation set supports insertion. For this it will be sufficient to
prove that for an insertion point (S, P, T), dimension n ∈ N and ϵ ∈ {−,+} that:

∂ϵn(S)JκS,P,T K = ∂ϵn(S�P T)

Then:

∂ϵn(S)JκS,P,T K = Supp(T n∂n(S)Jδϵn(S)K)JκS,P,T K by Lemma 3.3.22
= Supp(T n∂n(S)Jδϵn(S) • κS,P,T K)
= Supp(T n∂n(S≪P T)

Jδϵn(S�P T)K) by (*)
= ∂ϵn(S�P T) by Lemma 3.3.22

where the equality (∗) holds as sua satisfies the support condition by Theorem 4.3.3 and:

S�P T `sua T n∂n(S)Jδϵn(S) • κS,P,T K = T n∂n(S≪P T)
Jδϵn(S�P T)K

by Theorem 3.4.37.

4.3.1 Reduction for Cattsua

Using the results of Section 4.1, we give a normalisation algorithm for Cattsua by defining a
reduction systemwhich generates the equality relation and proving that this reduction system
is strongly terminating and confluent.

166

As with Cattsu, we cannot directly use the reduction⇝sua directly, as we have seen already
that the reduction⇝ecr alone is non-terminating. Similarly to pruning, allowing insertions into
identity terms also creates non-terminating loops of reductions when combined with endo-
coherence removal, as was explained in Section 4.2.1. We therefore restrict our reduction so
that no head-reductions can be applied to identity terms.

Although these restrictions are sufficient to ensure termination, we choose to further restrict
the set of insertion reductions, in order to streamline the proof of confluence. Firstly, we only
allow insertions of a locally maximal argument when that argument is either an identity or a
standard composition. Themotivation for this restriction is that identities and standard compo-
sitions are the only standard coherences that are in normal form. Moreover, not allowing the
insertion of endo-coherences avoids a difficult insertion/argument endo-coherence removal
confluence case.

We also disallow insertions into a unary composite and insertions of a unary composite, as we
have already seen in Section 3.4.3 that discs act as a left and right unit for insertion, and so these
two insertion reductions are subsumed by disc removal. Further, disallowing the insertion of
discs removes another case where an insertable standard coherence is not in normal form. We
now define the resulting reduction system.

Definition 4.3.5. Define the reduction⇝sua′ to be the reduction generated by the equality
rule set sua′ where:

sua′ = dr ∪ ecr′ ∪ insert′

where ecr′ is the endo-coherence removal set without the identity-to-identity reductions,
and insert′ is the insertion rule set restricted to insertion redexes (S, P, T,Γ, L,M) and types
A such that SCoh(S ;A)[L] is not an identity or a unary composite, and L(P) ≡ C lh(P)

T JMK
is an identity or a standard composite which is not a unary composite.

It can be determined by a simple observation that sua′ is tame, as suspension and the appli-
cation of substitution cannot transform a term into an identity or unary composite where
it wasn’t before. We further justify the restrictions made to insertion by showing that many
insertion reductions can still be performed, starting with the following technical lemma.

Lemma 4.3.6. If P is a branch of S, and L,L′ : S → Γ are labellings differing only on P ,
then the following holds for insertion redex (S, P, T,Γ, L,M):

L�P M ≡ L′�P M

Proof. By inspection of the definition, L�P M does not use the term L(P).

We now show that many insertion reductions can still be simulated up to bounded equal-
ity.

Lemma 4.3.7. Let (S, P, T,Γ, L,M) be an insertion redex. Further suppose that a ≡
SCoh(S ;A)[L] is not an identity or disc. Then there exists a term s with:

a⇝∗
sua′ s =dim(a) SCoh(S≪P T ;AJκS,P,T K)[L�P M]

even when L(P) is a unary composite or is not a standard composite or identity.

167

Proof. We proceed by induction on lh(P) − h(T). If lh(P) − h(T) = 0 then C lh(P)
T is a

composite. The only case for which insertion cannot be performed is when C lh(P)
T is a unary

composite, such that T = Dlh(P). Now by Lemma 3.4.23, S�P T ≡ S, L�P M ≡max L
and κS,P,T = idS and so

a =dim(a) SCoh(S≪P T ;AJκS,P,T K)[L�P M]

We now assume that lh(P) > dim(T). We may also assume without loss of generality that
C lh(P)
T is not an identity, as otherwise it would be immediately insertable. This allows us to

perform endo-coherence removal to get:

C lh(P)
T ⇝ id(U lh(P)−1

T , T lh(P)−1
T)JMK

Now suppose b ≡ Coh(S ;A)[L
′] where L′ is the result of applying the above reduction to

the term of L corresponding to P . Since L′(P) is now an identity it can be inserted to get
b⇝ c where:

c ≡ SCoh(S�P ;AJπP K)[L′�P ({T lh(P)−1
T } •M)]

≡ SCoh(S�P ;AJπP K)[L′�P ({C lh(P)−1
T } •M)]

where T lh(P−1)
T ≡ C lh(P−1)

T as if T lh(P)−1
T was a variable then C lh(P)

T would be an identity.

We now wish to show that 2 + bh(P) ≤ lh(P) so that P ′ exists as a branch of S �P . Since
we always have 1 + bh(P) ≤ lh(P), we consider the case where 1 + bh(P) = lh(P). We
know that bh(P) ≤ h(T) ≤ lh(P) and so one of these inequalities must be an equality. If
h(T) = lh(P) then C lh(P)

T is a standard composite. If h(T) = bh(P) then th(T) = h(T) and
so T is linear. However, this makes C lh(P)

T an identity. Either case is a contradiction and so
2 + bh(P) ≤ lh(P) and so P ′ is a branch of S � P .

By Lemmas 3.4.12 and 3.4.26, we now have:

P ′JL′�P ({C lh(P)−1
T } •M)K

≡ dlh(P)−1JιS,P,Dlh(P)−1 • (L′�P ({C lh(P)−1
T } •M))K

≡ dlh(P)−1J{C lh(P)−1
T } •MK

≡ C lh(P)−1
T JMK

As lh(P ′)− dim(T) = lh(P)− dim(T)− 1 we can use the induction hypothesis to get that
c⇝ d and:

d =dim(a) SCoh((S�P)≪P ′ T ;AJπP •κS�P,P ′,T K)[
(L′�P ({C lh(P)−1

T } •M))�P ′ M]

By Lemmas 3.4.26 and 4.3.6,

d =dim(a) SCoh(S≪P T ;AJκS,P,T K)[L�P M]

which completes the proof as a⇝∗ d.

168

We further show that insertions into discs can be simulated by disc removal.

Lemma 4.3.8. Let (Dn, P, T,Γ, L,M) be an insertion redex and let a ≡ CnDnJLK. Then:

a⇝sua′ s =n SCoh(Dn ≪P T ;Un
DnJκK)[L�P M]

Proof. We have the equality:

SCoh(Dn ≪P T ;Un
DnJκK)[L�P M] ≡ SCoh(T ;Un

DnJκDn,P,T K)[M] Lemma 3.4.22
=n SCoh(T ;Un

T)[M] by Theorem 3.4.37
≡ CnT JMK
≡ L(P)

Therefore, the reduction a⇝ s ≡ L(P) is given by disc removal.

Using these lemmas, we now show that the type theories Cattsua and Cattsua′ are equiva-
lent.

Proposition 4.3.9. The type theories generated by sua and sua’ are equivalent. Terms, types,
and substitutions are equal or well-formed in one theory exactly when they are equal or well-
formed in the other.

Proof. Both directions proceed by Lemma 2.4.2. Since sua′ ⊆ sua, it suffices to show that if
(Γ, s, t) ∈ sua with Γ `sua′ s : A for some type A then:

Γ `sua′ s = t

If (Γ, s, t) ∈ sua′, then there is nothing to do. If it is in ecr′, then the argument is the same as
in the proof of Proposition 4.2.7. We therefore assume (Γ, s, t) ∈ insert, and so there must
be some insertion redex (S, P, T,Γ, L,M) such that s ≡ bSCoh(S ;B)[L]c and

t ≡ bSCoh(S≪P T ;BJκS,P,T K)[L�P M]c

By an induction on dimension, we assume that the theories generated by sua and sua′ are
already equivalent for terms of dimension less than dim(s). We begin a case analysis of such
reductions than are not in insert. If s is an identity, then B ≡ b→ b for some term b and so
t is an endo-coherence. If t is already an identity, then s ≡ t. Otherwise:

Γ `sua′ t = id(bJκS,P,T K)JL�P MK
≡ id(b)JκS,P,T • (L�P M)K
= id(b)JLK
≡ s

where the first equality is by endo-coherence removal, and the second equality is by
Lemma 3.4.13, appealing to the induction on dimension.

If s is a unary composite we apply Lemma 4.3.8 and use the inductive hypothesis on di-
mension. Otherwise, we are done by Lemma 4.3.7 and the inductive hypothesis on dimen-
sion.

169

Having shown that the reflexive symmetric transitive closure of the reduction ⇝sua′ agrees
with the equality of Cattsua, we move on to showing that this reduction is strongly terminat-
ing. To do this we appeal to Lemma 4.1.7, and show that all reductions reduce the syntactic
complexity of the terms involved.

Lemma 4.3.10. The following inequality holds for any insertion redex (S, P, T,Γ, L,M):

sc(L�P M) < sc(L)

Proof. We extend the notion of syntactic complexity to labellings in the obvious way. We
begin by noting that:

sc(L) =
(
#
p ̸=P

sc(L(p))
)

sc(L(P))

=

(
#
p ̸=P

sc(L(p))
)

sc(C lh(P)
T JMK)

>

(
#
p ̸=P

sc(L(p))
)

sc(M)

Further, we show that for all labels L andM with appropriate conditions that:

sc(L�P M) ≤ #
p ̸=P

sc(L(p)) # sc(M)

which we do by induction on P . If P = [k] then it is clear that L�P M contains all the
terms of M and some terms of L, and crucially not L(P). If instead P = k :: P2 then by
induction hypothesis we get that:

sc(Lk�P2 M0) ≤ #
p ̸=P2

sc(Lk(p)) # sc(M1)

It is then clear again that L�P M contains terms from M and terms of L which are not
L(P), and so the inequality holds.

We can now show that insertion reductions reduce syntactic complexity.

Proposition 4.3.11. Let s⇝ t be an instance of insertion. If s is not an identity then sc(s) >
sc(t).

Proof. Let (S, P, T,Γ, L,M) be an insertion redex so that:

SCoh(S ;A)[L]⇝ SCoh(S≪P T ;AJκK)[L�P M]

170

by insertion. By assumption Coh(S ;A)[L] is not an identity. Then:

sc(t) = sc(SCoh(S≪P T ;AJκK)[L�P M])

≤ 2ωdim(A) # sc(L�P M)

< 2ωdim(A) # sc(L) by Lemma 4.3.10
≤ SCoh(S ;A)[L]

= sc(s)

and so sc(s) > sc(t), completing the proof.

Corollary 4.3.12. The reduction system⇝R is strongly terminating.

Proof. By Lemma 4.1.7, it suffices to show that each rule of sua′ reduces syntactic complexity,
which follows from Propositions 4.1.8, 4.1.10, and 4.3.11.

4.3.2 Confluence of Cattsua

In this section, we prove the following theorem:

Theorem 4.3.13. The reduction⇝sua′ is confluent.

The confluence proof for Cattsua is significantly more complex than the corresponding proof
for Cattsu. The primary difficulty with Cattsua is that a term can have an insertion redex
where the term to be inserted admits a head reduction. In particular, consider the case where
a ≡ SCoh(S ;A)[L] ⇝ b is an instance of insertion along some branch P , and a ⇝ c is an
insertion on the argument L(P). The difficulty of this critical pair is that L(P) need not be
in head normal form, and furthermore, the reduction a ⇝ c can make the original insertion
invalid. This does not occur in the predecessor theory Cattsu, where only identities can be
pruned, and all reducts of identities are again identities.

Wewill prove this theoremusing Lemma 4.1.15. It is therefore sufficient to show that whenever
b ⇝a⇝ c, with a⇝ b being a reduction derived from Rule, that the following diagram can
be formed:

a

b c

b′ =dim(s) c
′

∗ ∗

We split by cases on the reduction a ⇝ b, ignoring cases where both reductions are identical
and ignoring cases which follow by symmetry of other cases. Any cases which do not mention
insertion will follow from an identical argument to the one given in Theorem 4.2.8, and so we
omit these here. We can therefore assume without loss of generality that a⇝ b is an insertion
along redex (S, P, T,Γ, L,M) such that a is not an identity or unary composite and C lh(P)

T

171

is an identity or a standard composite which is not unary. We now split on the reduction
a⇝ c.

Insertion on the inserted argument L(P) Suppose C lh(P)
T JMK admits an insertion along

redex (T,Q, U,Γ,M,N). Then:

C lh(P)
T JMK⇝ SCoh

(T ≪Q U ;U lh(P)
T JκT,Q,U K)[M�QN]

We then have c ≡ SCoh(S ;A)[L
′] where L′ is L with the reduction above applied. We can

conclude that C lh(P)
T must be a composite (i.e. not an identity) as otherwise the second insertion

would not be possible. Similarly, T cannot be linear as otherwise C lh(P)
T would be a unary

composite.

We nowneed the following lemmas, the second ofwhich is a directed version ofTheorem 3.4.37
with more conditions.

Lemma 4.3.14. For all n and S, CnS ⇝∗ T nS .

Proof. The only case in which CnS 6= T nS is when S = Dn, in which case a single disc removal
gives the required reduction.

Lemma 4.3.15. Let (S, P, T) be an insertion point. Then if S is not linear or n ≤ h(S),
UnS JκS,P,T K⇝∗ UnS≪P T

and if h(S) ≤ n and S is not linear or h(S) = n then T nS JκS,P,T K⇝∗

T nS≪P T
.

Proof. We proceed by induction on n, starting with the statement for types. If n = 0 then
both standard types are ⋆, so we are done. Otherwise, we have:

Un+1
S JκS,P,T K ≡ T n∂n(S)Jδ−n (S)KJκS,P,T K Un+1

S≪P T
≡ T n∂n(S≪P T)

Jδ−n (S�P T)K
→Un

S JκS,P,T K →Un
S ≪P T

T n∂n(S)Jδ+n (S)KJκS,P,T K T n∂n(S≪P T)
Jδ+n (S�P T)K

By inductive hypothesis: UnS JκS,P,T K⇝∗ UnS≪P T
, and so we need to show that:

T n∂n(S)Jδϵn(S) • κS,P,T K⇝∗ Un∂n(S≪P T)
Jδϵn(S�P T)K

We now note that either the conditions for Lemma 3.4.32 or Lemma 3.4.34 must hold. If
conditions for Lemma 3.4.32 hold then (as everything is well-formed in Catt) we get that
the required reduction is trivial. Therefore, we focus on the second case. Here we get from
Lemma 3.4.34 that:

T n∂n(S)Jδϵn(S) • κS,P,T K ≡ T n∂n(S)Jκ∂n(S),∂n(P),∂n(T) • δϵn(S�P T)K
Then we can apply the inductive hypothesis for terms as if n ≤ dim(S) then h(∂n(S)) = n
and otherwise ∂n(S) = S is not linear, and so we get the required reduction.

Now we move on to the case for terms. If T nS is a variable, then we must have that S is
linear and so S = Dn. We must also have in this case that T nS = P . Then by Lemma 3.4.12,

172

T nS JκS,P,T K ≡ CnT JιS,P,T K and then by Lemmas 3.4.22 and 4.3.14 this reduces to T nS≪P T
as

required. If T nS is not a variable, then T nS ≡ CnS , and CnS cannot be an identity (as either S is
non-linear or n = dim(S)). By Lemma 3.4.12 and other assumptions we get that CnSJκS,P,T K
admits an insertion along branching point P and so:

T nS JκS,P,T K ≡ CnSJκS,P,T K
⇝ SCoh(S≪P T ;Un

S JκS,P,T K)[κS,P,T �P ιS,P,T]

≡ SCoh(S≪P T ;Un
S JκS,P,T K)[id]

⇝∗ SCoh(S≪P T ;Un
S ≪P T)[id]

≡ CnS≪P T

⇝∗ T nS≪P T

With the second equivalence coming from Lemma 3.4.36, the second reduction coming from
inductive hypothesis (which is well-founded as the proof for types only uses the proof for
terms on strictly lower values of n), and the last reduction coming from Lemma 4.3.14.

By this lemma (as T is not linear), we have

U lh(P)
T JκT,Q,UK⇝∗ U lh(P)

T ≪P Q

and so C lh(P)
T JMK⇝∗ C lh(P)

T ≪Q UJM�QNK. Let c′ be the term obtained by applying this further
reduction to the appropriate argument. Now by Lemma 3.4.39, we have that th(T �Q U) ≥
th(T) and so by Lemma 4.3.7, there is c′ ⇝∗ c′′ with:

c′′ =dim(a) SCoh(S≪P (T ≪Q U) ;AJκS,P,T ≪Q U K)[L�P (M�QN)]

We now examine how b reduces. As T is not linear, there is a branch S�P Q of S�P T and
we get the following by Lemma 3.4.13:

S�P QJL�P MK ≡ QJιS,P,T • (L�P M)K ≡ QJMK ≡ C lh(Q)
U JNK

Since th(U) ≥ bh(Q) = bh(S�P Q) we can reduce b to b′ by insertion as follows:

b′ ≡ SCoh((S≪P T)≪S ≪P Q U ;AJκS,P,T •κS ≪P T,S ≪P Q,U K)[(L�P M)�S≪P QN]

and then by Lemma 3.4.41 we get b′ =dim(a) c
′′ as required.

Argument reduction on the inserted argumentL(P) SupposeM ⇝M ′, andL′ isL but
with the argument for P replaced by C lh(P)

T JM ′K, such that L⇝ L′ and a⇝ c ≡ Coh(S ;A)[L
′].

Then c admits an insertion and reduces as follows:

c⇝ c′ ≡ Coh(S≪P T ;AJκS,P,T K)[L′�P M
′]

Since each term in L�P M is a term of L or a term of M , we can simply apply the same
reductions from L ⇝ L′ and L ⇝ M ′ to get L�P M ⇝∗ L′�P M

′. Therefore, b ⇝∗

c′.

173

Other reduction on the inserted argumentL(P) TheargumentL(P) is either a standard
composite which is not unary or an identity. Therefore, the type contained in the coherence is
in normal form and hence a cell reduction cannot be applied. Further, disc removal cannot be
applied, as L(P) is not a unary composite, and endo-coherence removal cannot be applied as
if L(P) is an endo-coherence then it is an identity. Hence, there are no other reductions that
can be applied to the inserted argument and so this case is vacuous.

Reduction of non-inserted argument Suppose L ⇝ L′ along an argument which is not
P and c ≡ Coh(S ;A)[L

′]. Then as L′(P) ≡ C lh(P)
T , an insertion can still be performed on c to

get:
c⇝ c′ ≡ SCoh(S≪P T ;AJκS,P,T K)[L′�P M]

Since the terms of L�P M are a subset of the terms of L and M , we get L�P M ⇝∗

L′�P M and so b⇝∗ c′.

Disc removal By assumption, insertion cannot be applied to unary composites, and so this
case is vacuous.

Endo-coherence removal Suppose A ≡ s→B s and a ⇝ c by endo-coherence removal.
In this case c ≡ id(A, s)JLK and

b ≡ Coh(S≪P T ; (s→Bs)JκS,P,T K)[L�P M]

which reduces by endo-coherence removal to:

b′ ≡ id(A, s)JκS,P,T • (L�P M)K
By Lemma 3.4.13, we have that κS,P,T ◦ (L�P M) =dim(S) L and so b′ =dim(S) c and since
dim(S) ≤ dim(a), we get b′ =dim(a) c as required.

Cell reduction If A ⇝ B and c ≡ SCoh(S ;B)[L] from cell reduction, then if c is not an
identity or disc it admits an insertion to reduce to:

c′ ≡ SCoh(S≪P T ;BJκS,P,T K)[L�P M]

As reduction is compatible with substitution, b also reduces to c′. If instead c was an identity
then

b ≡ SCoh(Dn ≪P T ;AJκS,P,T K)[L�P M]

⇝ SCoh(Dn ≪P T ;Un+1
Dn JκS,P,T K)[(L�P M)]

⇝∗ id(dn)JκS,P,T • L�P MK
=n+1 id(dn)JLK
≡ c

Where the second reduction is due to Lemma 4.1.9 and the equality is due to Lemma 3.4.13. If
c is a disc then Lemma 4.3.8 can be applied to get that c reduces to a term c′′ with c′′ =n+1 c

′

and b⇝ c′, completing this case.

174

Insertion Suppose a ⇝ c is also an insertion, along a branch Q of S. We now split on
whether P = Q. First suppose P = Q; then by Lemma 3.4.27, we have b =dim(a) c. Suppose
now that P 6= Q, and that L(Q) ≡ C lh(Q)

U JNK, such that:

c ≡ SCoh(S≪Q U ;AJκS,Q,U K)[L�QN]

We now consider the case where b is an identity. As P and Q are distinct branches of S, we
must have that S itself is not linear. Therefore, the insertion along P must be an insertion of
an identity. Further, for b to have the correct type for an identity, we must have that AJπP K ≡
SPath(Q) → SPath(Q). The only path sent to Q by πP is Q itself, and so A ≡ SPath(Q) →
SPath(Q). Now, by Lemma 3.4.12:

c ≡ SCoh
(S≪Q U ; Clh(Q)

U JιK→Clh(Q)
U JιK)[L�QN]

⇝ id(C lh(Q)
U JιK)JL�QNK by endo-coherence removal

≡ id(C lh(Q)
U)JNK by Lemma 3.4.13

Then, L�P M sends Q to L(Q) ≡ C lh(Q)
U JNK, and so b ≡ id(C lh(Q)

U)JNK.
The case where c is an identity is symmetric, so we now consider when neither b or c are
identities. We now observe that b and c further reduce as follows:

b⇝∗ b′ =dim(a) SCoh((S≪P T)≪Q≪P T U ;AJκS,P,T •κS ≪P T,Q≪P T,U K)[(L�P M)�Q≪P T N]

c⇝∗ c′ =dim(a) SCoh((S≪Q U)≪P ≪Q U T ;AJκS,Q,U•κS ≪Q U,P ≪Q U,T K)[(L�QN)�P ≪Q U M]

We show that the first reduction is valid with the validity of the second holding by symmetry.
If b is a unary composite then we apply Lemma 4.3.8 to obtain a suitable b′: Otherwise, we
obtain the reduction via insertion, noting that:

Q�P T JL�P MK ≡ QJκKJL�P MK
≡ L(Q)

≡ C lh(Q)
U JNK

≡ C lh(Q≪P T)
U JNK

as required for the insertion, with the third equality coming from Lemma 3.4.13. Lastly, the
trunk height condition is satisfied as bh(Q) = bh(Q�P T).

Therefore, both reductions are valid. We now need the following lemma to complete the
proof:

Lemma 4.3.16. Let (S, P, T,Γ, L,M) be an insertion redex. Then:

L�P M =bh(P)+1 L�′
P M

Proof. By Proposition 3.4.30, the two labellings are equal. By inspection of the definition,
the maximum dimension of terms that differ is dim(bh(P)).

By the above and Lemma 3.4.31, b′ =dim(a) c
′. This completes all cases of Theorem 4.3.13.

175

4.4 Towards normalisation by evaluation
In this section, the Rust implementation of Catt, Cattsu, and Cattsua, which can be found
at [Ric24b], is introduced. This implementation takes the form of an interpreter, allowing
terms of Catt to be written in a convenient syntax which can be mechanically checked. The
implementation aids the user in writing Catt terms by automatically constructing standard
composites, allowing terms to be bound to top level syntax, implicitly suspending terms, au-
tomatically filling arguments which are not locally maximal, and providing informative error
messages to the user when typechecking fails.

We highlight three points of our implementation:

• The typechecker uses bidirectional typing [DK21] to mix “inference” and “checking”
rules. Although types for Catt can always be inferred, we find ourselves in the un-
usual situation where in some cases the context a term lives in can be inferred, and in
some cases it must be provided. We expand on this type system in Section 4.4.3.

• Tree contexts (see Section 3.2) are given an explicit representation in the tool. The syntax
in the theory is then split into syntax over a tree context and syntax over an arbitrary
context. Syntax over a tree context can then use paths instead of de Bruijn levels to
reference positions in the context, and substitutions from tree contexts can be given by
labellings. We explore this syntax in Section 4.4.1.

• During typechecking, the equality between types must be checked, which is done by
syntactically comparing the normal form of each type. In this implementation, an ap-
proach inspired by normalisation by evaluation is taken, as opposed to the reduction
based approaches used in the previous sections.

Normalisation by evaluation (NbE) (see [Abe13] for an introduction), can be viewed as a
method of evaluating terms with “unknowns”. Equivalently, NbE defines a semantic model
of the theory, and interprets each constructor of the type theory in these semantics. When
equipped with a method for transforming elements of this model back to terms of the type
theory (referred to as quoting), the normal form of a term can be calculated directly by re-
cursion on its structure. Compared to the reduction based approach taken in the previous
sections, which simplifies the term via a series of locally applied reduction rules, NbE takes
a more global approach, deconstructing the original term and using it to synthesise a normal
form.

The form of NbE implemented in the tool is largely inspired by the paper “Implementing a
modal dependent type theory” [GSB19], although we note that the form of the theory Catt is
vastly different to the modal type theory they present; Catt does not have lambda abstraction
or application in the usual sense, which makes adapting NbE techniques from the literature
difficult. Nevertheless, the overall form of the evaluation is similar.

A high-level overview of the implementation is given in Figure 4.2. We pause to explain the
purpose of each component:

• The raw syntax is the syntax that the user of the tool interacts with. We maintain no
invariants over the well-formedness of the raw syntax, and it allows the user to omit ar-
bitrary arguments. The primary purpose of the raw syntax is to be the target of parsing,
and conversely to facilitate the pretty-printing of terms. We also specify a command
language around this raw syntax which is used to interact with the tool.

176

Raw syntax

Core syntax

Normal form syntax

checkinfer to_raw

evalquote

Figure 4.2: Implementation overview.

• The core syntax is the result of the typechecking procedure. Syntax of this form is known
to be well-formed, and all implicit arguments have been filled in at this point. The
terms of this syntax resemble the structured terms of Section 3.3, with various common
operations of Catt being defined as constructors. Contrary to previous representations
of Catt in this thesis, the application of substitution is treated as a term former, instead
of an operation.

• The normal form syntax represents the normal forms of each of the type theories Cattsua,
Cattsu, and Catt itself. This syntax is also always assumed to be well-formed, and is
the closest to original syntax of Catt.

• The eval and quote functions convert syntax between core syntax and normal form
syntax. For each constructor in the core syntax, evaluation computes the result of the
corresponding operation, quotienting by the rules of Cattsu or Cattsua when applicable.
We note that despite Catt itself having no computation, evaluation must still process
operations such as suspension and substitution application. Quotation converts normal
form syntax back to core syntax, and in our case is a trivial inclusion.

• The infer and check functions perform typechecking while converting raw syntax into
core syntax. Both functions are mutually dependent on each other, and also may need
to convert types to normal form syntax to check equality. The to_raw functions “forget”
that a piece of core syntax is well-formed, returning a piece of raw syntax, and can
optionally remove all non-locally maximal arguments from terms.

In the following subsections, we expand on these points, fully defining each class of syntax,
and describing the typechecking and evaluation procedures.

4.4.1 Syntax
Before defining each of the syntactic classes in the tool, we introduce some common notation
that will be used in the definitions below:

• The letter v will be used to represent names in the syntax: strings that represent a valid
identifier.

• A Maybe(x) is either of the form Some(x) or None.

• The notation Tree(x) represents a tree structure which is given by a list of x’s which we

177

call the elements and a list of trees, which we call the branches, whose length is one less
than the list of elements. These resemble labellings from Section 3.2.2, but will allow
trees to be labelled with arbitrary objects.

We begin our study of the syntax with the raw syntax, which is defined by the following
grammar:

(Terms) s, t ::= v | coh[T : A] | _ | id | comp | incmn (s) | sJσK | Σ(s)
(Types) A ::= ⋆ | s→Maybe(A) t | _ | AJσK | Σ(A)
(Arguments) σ ::= (Tree(Maybe(s)),Maybe(A)) | (Maybe(A,)s0, . . . , sn)

(Contexts) Γ ::= T | (v0, A0), . . . , (vn : An)

(Tree Contexts) T ::= Tree(Maybe(v))

The primary purpose of the raw syntax is to accurately represent the written plaintext syntax.
For most cases, each constructor is written in plaintext exactly how it is written above, apart
from a few cases:

• The application of substitution sJσK andAJσK is simply written s σ andA σ respectively.

• The constructor incmn is not parsed and is used as an internal operation for defining the
external labelling (see Section 3.4). It is displayed as inc<n-m>.

• The suspension can be given by the characters Σ or S, to avoid the user being forced to
type Unicode characters.

• The type s→None t is written simply as s → t, and the type s→Some(A) t is written as
A | s→ t, where the symbol→ can be replaced by -> in either case.

• For the construction Maybe, Some(s) is printed the same as s, and None is printed as
the empty string.

• We provide two ways to write trees:

– The curly bracket notation from Section 3.2 can be used. The string:

s0{T0}s1 · · · {Tn}sn+1

is parsed as a tree with elements given by (the parse of) s0 to sn+1 and branches
given by the parse of T0 to Tn.

– We provide a notation for specifying the locally maximal arguments of a tree. We
parse the string:

[a1, a2, . . . , an]

As a tree that has None as each of elements branches by given by each of the ai,
where if ai does not recursively parse as a tree, it is parsed as an element and
wrapped in a singleton tree.

To compare these two notations, the two trees below are equal:

{f}{{a}{b}} = [f, [a, b]]

When using the full (curly bracket) notation to specify a labelling, it must be wrapped
in angle brackets to avoid parse ambiguity.

178

We highlight the use of the extended substitution introduced in Section 2.1 in the raw syn-
tax. This allows the tool to perform “implicit suspension”, the automatic suspension of a term,
by reducing it to a problem of type inference. These extended substitutions are converted
to regular substitutions by the evaluation function introduced in Section 4.4.2, which applies
the appropriate number of suspensions to the head term. An example of this is given in Sec-
tion 4.4.4.

The syntax includes two new base constructors for terms alongside the coh constructor: comp
and id. These allow easy access to common terms that are prevalent in most Catt terms; the id
constructor produces an identity term and the comp constructor produces a standard compos-
ite (a term of the form Cdim(T)

T , see Section 3.3.2). The dimension of the identity term and the
tree T that the comp term composes over can be inferred during typechecking (Section 4.4.3),
simplifying the syntax of many common terms. The evaluator (Section 4.4.2), converts coher-
ence terms of the appropriate form to these constructors and leverages this to identify regexes,
noting that composites and identities are the normal forms of standard coherences (see Theo-
rem 3.3.27) in Cattsu and Cattsua.

We also provide a command language on top of the raw syntax for Catt, which allows the
user to perform various operations on terms, such as binding them to a top-level name, or
normalising them. These commands are given by the following syntax:

def v = s
∣∣ def v Γ = s

∣∣ def v Γ : A = s∣∣ normalise s in Γ
∣∣ assert s = t in Γ

∣∣ size s in Γ∣∣ import filename

The first three commands define the name v to be given by the term s, where the context Γ and
type A can optionally be given, determining whether the term s will be inferred or checked.
The next three commands take a context Γ and respectively calculate the normal form of s in
Γ, assert that s and t are equal in Γ, or count the number of coherence constructors in s. The
last command parses the file filename and runs the commands it contains.

In the implementation, each piece of syntax is paired with a piece of span information, which
specifies where in the source file it originated. This is done by making the raw syntax generic
over a type S of spans. When obtaining the raw syntax from parsing, this S is given by a
range n < m specifying the start and end indices of where the syntax appeared in the text.
When the syntax is obtained from the to_raw functions, S is given by the unit type.

The span information allowsmore informative errormessages to be given, which are formatted
using the ariadne crate. An example error message is given below:

Error: Given term "x" does not match inferred term "y"
╭─[examples/test.catt:19:34]
│

19 │ def error_test x{f}y = comp ⟨x{f}x⟩
│ ┬
│ ╰── Given term

────╯

In the above example, the span attached to the erroneous term x is used to identify the line of
the code which should be displayed and determine where the “Given term” label should point
to.

179

https://docs.rs/ariadne/latest/ariadne/

We now move on to the core syntax of the tool. The overall form of the core syntax is similar
to that of the raw syntax with the following differences:

• Span information is no longer included in the core syntax.

• Terms that were optional in the raw syntax (as specified using the Maybe construction)
are no longer optional. The hole constructor is also removed.

• The syntax is generic over a type P of positions. In practice, the type P is either the
type of de Bruijn levels, for terms over a standard context, or paths, for terms over a
tree context. Both of these types implement the Position trait, allowing us to call the
required functions that depend on the type of positions.

• The constructor for variables v in the raw syntax is replaced by two separate construc-
tions, a constructor varp for local variables, where p : P , and top_lvl(v, s) for a top-level
symbol v which is bound to term s.

• Application of substitutions and labellings are now separate constructors. This is primar-
ily due to a limitation of the Rust type system which doesn’t allow an App constructor
to existentially quantify over the type of positions in the input term.

• The comp constructor now records the tree it is composing over, and will be written
compT . Similarly, the id constructor becomes idn, with n recording the dimension of
the term the identity is applied to.

The core syntax is defined by the following grammar. Following [GSB19], a different colour is
used for each of the three categories of syntax.

(Terms) s, t ::= varp | top_lvl(v, s) | coh[T : A] |
idn | compT | inc

m
n (s) | sJσK | sJLK | Σ(s)

(Types) A ::= ⋆ | s→A t | AJσK | AJLK | Σ(A)
(Substitutions) σ ::= (A, s0, . . . , sn)

(Labellings) L ::= (Tree(s), A)

(Contexts) Γ ::= (v0, A0), . . . , (vn : An)

(Tree Contexts) T ::= Tree(Maybe(v))

The above classes of syntax are parameterised by the type of positions P . We enforce that for
the application of substitution sJσK that the term s is a term with P = N, the type of de Bruijn
levels, and for sJLK, the application of a labelling, that s is a term with P = Path. The type of
paths is given by a non-empty list of natural numbers, as in Section 3.2.

The type of positions must satisfy the Position trait, which provides:

• An associated Ctx type, given by contexts for N and tree contexts for Path.

• An associated container type Container which can be indexed by P . This is given by
Vec (Rust’s dynamically sized array type) for levels and Tree for paths. This container
type defines the form of substitutions and labellings respectively.

• A function to_name, which gives a canonical name to each p : P , used when converting
back to a raw term.

180

In the core syntax, all the variable names have been replaced by an index into the context, with
all the original variable names being moved to the context. The to_raw function then takes a
piece of syntax and a context and simply undo this, mapping a varp to v, where pmaps to v in
the supplied context. The context argument of to_raw is optional as the context is not always
available, for instance with the term sJσK, we do not know the context that s should live in.
When the context is not available, or no name is known for p in the context, varp is mapped
to to_name(p).

For the remainder of the syntax, to_raw removes extra information that was obtained during
typechecking, such as the tree associated to a comp, the dimension of an id, or the term asso-
ciated to a top-level binding. We also accept a boolean parameter declaring whether implicit
arguments should be kept; if this is true then the Some constructor of the Maybe type is used
whenever possible, otherwise only locally maximal arguments are kept, replacing the rest with
the None constructor.

Lastly, we introduce the normal form syntax. This is the simplest of the three categories of
syntax and is closest to the base syntax of Catt. It is given by the following grammar:

(Head) H ::= coh[T : A] | idn | compT
(Terms) s, t ::= varp | HJLK
(Labellings) L ::= Tree(s)

(Types) A ::= [(s0, t0), . . . , (sn, tn)]

(Tree Contexts) T ::= Tree(Maybe(v))

As with the core syntax, this syntax is parameterised by a type of positions P . In the normal
form syntax, application of substitution is removed, and labellings can no longer be applied to
an arbitrary term, but only to a head term, which is a single coherence, composite, or identity.
The composite and identity constructions are prioritised as head terms due to the role they
play in Cattsua, being the only insertable arguments.

Many of the extra operations such as suspension are not present in the normal form syntax.
In particular, the syntax for types is far simpler, allowing them to be represented by a vector
of pairs of terms. A type [(s0, t0), . . . , (sn, tn)] represents the type s0 → t0, with the tail of
the list giving the lower-dimensional part of the type. The type ⋆ is represented by the empty
list.

4.4.2 Evaluation
We now describe the core technical part of the tool, the evaluation of a piece of core syntax to
its normal form, which is crucial in checking the equality of types. Various pieces of reduction
can be configured in the evaluation process:

• Disc removal can be turned off or on.

• Endo-coherence removal can be enabled or disabled.

• Insertion can be set to never happen, only allow insertion of identities, or allow insertion
of identities and standard composites.

Following the NbE style we have already introduced, we define (semantic) environments, which
are required to evaluate a term to a normal form.

181

Definition 4.4.1. For a type of positions P , a P -environment takes the form of a P -
Container of normal form terms, along with a normal form type. More concretely this
is given by a tree of terms when P = Path and a vector of terms when P = N.

For an environment ρ, we write Ty(ρ) for the type associated with ρ and ρ(p) for the pth
element of the container, where p : P . This mirrors the syntax used for a term-labelling in
Section 3.2, as environments are simply an abstraction over labellings and substitutions. Due
to this similarity, the restriction of an environment can be defined, similarly to its definition
for substitutions. A Path-environment can be repeatedly unrestricted until the contained type
is ⋆, returning a labelling.

Definition 4.4.2. We define the restricted environment ↑ ρ for each P -environment ρ. For
P = N, we let Ty(↑ ρ) = (ρ(0), ρ(1)) :: Ty(ρ) and ↑ ρ(n) = ρ(n+ 2). For P = Path, we let
Ty(↑ ρ) = (ρ([0]), ρ([1])) :: Ty(ρ) and ↑ ρ(p) = ρ(0 :: p).

If ρ is a Path-environment, then there is a labelling ↓ ρ, obtained by popping pairs of terms
(s, t) from Ty(ρ) and pushing them to the bottom of the tree contained in ρ (applying the
map T 7→ s{T}t) until Ty(ρ) = []. Lastly, for the same ρ, its inclusion ρmn can be defined
letting Ty(ρmn) = Ty(ρ) and if the tree part of ρ is given by:

s0{T0} · · · sn{Tn} · · · {Tm−1}sm · · · {Tk}sk+1

then the tree part of ρmn is given by sn{Tn} · · · {Tm−1}sm.

There are also identity environments, that play the role of the identity substitution and identity
labelling.

Definition 4.4.3. From a (core) context Γ, an N-environment idΓ can be formed with type
[] and idΓ(i) = vari for each i < len(Γ). For each tree T , a Path-environment idT can be
formed again with type [] such that idT (p) = varp for each path p of T .

We can now define the functions evalρ, which takes a piece of syntax and evaluates it in the
environments ρ to a normal form, and quote which includes normal forms back into core
syntax. Intuitively, evalρ(s) computes the normal form of sJρK.
We define evalρ(s), evalρ(A), evalρ(σ), evalρ(L), to be respectively a normal form term, a
normal form type, an N-environment, and a Path-environment. We proceed by case analysis,
giving the easier cases below.

evalρ(varp) = ρ(p) evalρ(top_lvl(v, s)) = evalρ(s) evalρ(idn) = idnJ↓ ρK
evalρ(incmn (s)) = evalρmn (s) evalρ(sJσK) = evalevalρ(σ)(s) evalρ(sJLK) = evalevalρ(L)(s)

evalρ(Σ(s)) = eval↑ ρ(s)

evalρ(⋆) = Ty(ρ) evalρ(s→A t) = (evalρ(s), evalρ(t)) :: evalρ(A)

evalρ(AJσK) = evalevalρ(σ)(A) evalρ(AJLK) = evalevalρ(L)(A) evalρ(Σ(A)) = eval↑ ρ(A)

The environments evalρ(σ) and evalρ(L) are then obtained by evaluating the type and all
the terms in σ and L respectively. We note that suspension is evaluated by restricting the

182

environment, and does not require a full traversal of the term, demonstrating the further utility
of the extended substitution introduced in Section 2.1.

This leaves the cases for the coh and comp terms. For these cases, we need definitions of the
standard type of dimension n over a tree S and the exterior labelling for an insertion point
(S, P, T), which we define as the core syntax UnT and κS,P,T . We omit the definitions of these,
as they are similar to those given in Section 3.4, using the inc and Σ constructors in place of
the Inc constructor of structured terms. For (labelled) trees S and T such that (S, P, T) is an
insertion point, we also define the inserted (labelled) tree S�P T identically to the inserted
labelling.

We now proceed with the case for coh[S : A], assuming we are evaluating it in environment ρ.
We begin by letting d = dim(Ty(ρ)) and obtaining the labelling L = ↓ ρ. The number d rep-
resents the number of times the term must be suspended, and so S and A are each suspended
d times, where the type A is suspended by applying a Σ constructor, and S is suspended by
replacing it with the tree None{S}None.

We now search for insertion redexes in the labelling L, splitting on the type of insertion that
is enabled:

• If no insertion is enabled, this phase is skipped.

• If insertion of identities is enabled, and there is a locally maximal argument given by
branch P (where we take P to be the branch of minimal branching height) that is of the
form idnJMK, we return the insertion redex (S, P,Dn, _, L,M), where the target of L
andM is unspecified.

• If full insertion is enabled, and there is a locally maximal argument given by branch P
that is of the form compT JMK, where bh(P) > lh(T), we return the insertion redex
(S, P, T, _, L,M).

If an insertion redex (S, P, T, _, L,M) is found, then S is replaced by S�P T , L is replaced by
L�P M , and A is replaced by AJκS,P,T K. This step is then repeated until no insertion redexes
are found.

Remark 4.4.4. At this critical step, the evaluation proceeds in a fashion closer to reduction
than NbE, with insertions repeatedly applied by searching for redexes and applying reduc-
tions to the head term. This seems unavoidable; even if one could define a parallel insertion
which inserted all insertable arguments at once, it is not clear how to deal with locally
maximal arguments that are iterated identities. Despite this, we still claim that the over-
all structure of the evaluation follows an NbE style, especially regarding the treatment of
suspension and application of substitutions and labellings.

We next obtain the type B = evalidS(A), and split into cases:

• If endo-coherence removal is enabled, and B is of the form (s, s) :: B′, then we let
t→C t = quote(B), interpret L as an environment by letting Ty(L) = ⋆ and let:

evalρ(coh[S : A]) = iddim(B′)J{evalL(C), evalL(t)}K
where the labelling {_, _} from a disc can be trivially constructed by deconstructing the
type.

183

• Suppose endo-coherence removal is disabled, S is a disc Dn, and B is of the form
(varpn , varpn) :: B′, where we recall the path pn is the unique locally maximal variable
of Dn, then we let:

evalρ(coh[S : A]) = idnJLK
• If disc-removal is enabled, S = Dn, and B is equal to the standard type of dimension n,
then:

evalρ(coh[S : A]) = L(pn)

• If none of the above cases hold, andB is equal to the standard type of dimension dim(S),
then:

evalρ(coh[S : A]) = compSJLK
• If none of the above cases hold, then:

evalρ(coh[S : A]) = coh[S : B]JLK
The compT case is treated in much the same way, removing any step involving A and instead
setting B = evalidT (UnT), where n is given by the dimension of T before any insertion was
performed. This completes all cases for the evaluation function.

In contrast, the quote function is defined completely trivially by recursion, converting head
terms and normal form terms to core terms, normal form labellings to core labellings, and
converting normal form types to an iterated arrow type in the obvious way. We note that this
is unusual for NbE, where the quote function is often mutually defined with evaluation, and
performs a significant portion of the work of converting terms to normal form.

4.4.3 Typechecking
Now that the three classes of syntax and the evaluation function have been introduced, the
bidirectional typechecking algorithm in the tool can be described. Bidirectional typing allows
us to mix typing rules which “check” a term, and typing rules which “infer” the type for a term.
In the implementation, this will determine which pieces of data are inputs to a procedure, and
which pieces of data are outputs.

By Lemma 2.2.7, all Catt terms s have a unique type, which is given by the canonical type
Ty(s). However, for certain terms, such as the coherence term coh[T : A], we will be able to
further infer the context that a term lives in, which in this case is the tree context T . In this
case the pair of the inferred context and type is known as a principal typing [Jim96], which is
not to be confused with a principal type of a term in a fixed context.

Due to our unique case where all types are inferable, but the context in a judgement may
or may not be inferable, we refer to judgements where the context is an input as checking
judgements and judgements where the context is output as inferring judgements.

Remark 4.4.5. We justify this choice of terminology by noting the similarity of the judge-
ments Γ ` s : A and · ` ΠΓ s : Γ → A in a type theory with (dependent) function types,
where inferring the type of the second judgement would infer the context of the first. Of
course, Catt does not have function types, yet the intuition can still apply.

184

The typing system will be defined with respect to a Signature Ψ, which contains a mapping
from names to triples (U, s, A)where s is a term of typeA in (tree) contextU. In the implemen-
tation, the signature also stores all relevant settings for the tool: which reductions are active,
the operation setO (which can only be configured to the groupoidal or regular operation sets),
and whether implicit variables should be kept in the to_raw functions. We write:

Ψ(v) = (U, s, A)

if the signature Ψ maps v to the triple above.

We further define the notation U(i) = (v : A) to mean that at the ith index of U (with U being
a tree or a context), contains a variable name v, which is given type A by U.

Lastly we define two conversion functions: from_sub and flatten. The first is a (partial) func-
tion which takes a tree T and a substitution σ and creates a labelling from_subT (σ) by letting
the locally maximal arguments be given by the terms of σ, if σ contains the correct number of
terms. The function flatten acts on the Maybe construction applied to a term or type. It takes
Some(s) and Some(A) to s and A respectively, and None to _, the hole constructor for terms
and types.

Our bidirectional typing system will be based on the following judgements, letting U refer to
either a context or tree context:

s⇝ U ` t : A Convert s to t inferring its type A in inferred (tree) context U
U ` s⇝ t : A Given U, convert s to t checking it has some type A in U
U ` s = t⇝ () In U, check s has normal form t

U ` A⇝ B = C In U, convert A to B, inferring its normal form C

U ` A = C ⇝ () In U, check A has normal form C

Γ ` ⇝ U Check Γ, producing (tree) context U
U ` σ : Γ⇝ τ Check σ is a substitution from Γ to U, producing τ
U ` L : T ⇝M : A Check labelling L in U, producingM with type A

for each judgement, the syntax to the left of⇝ are the inputs to the judgements, and the syntax
to the right are the outputs.

The typing rules for all judgements of this system are given in Figure 4.3. In this figure, Dn

always refers to the linear tree of height n, rather than the disc context, ∅ refers to the empty
context, and [] refers to the singleton tree. In the final rules, i should be treated as if it is
universally quantified. We pause to highlight some of these rules:

• In the rule for coherences, marked α, the support conditions are checked. This is done
using the normal form syntax for the type, due to the simplicity of this syntax. The
variable sets of a term can easily be collected by recursion, and in the implementation
are stored in a hash set, using Rust’s HashSet type.

• The rule for composites, marked β, is crucially a checking rule as there is no way to infer
the tree T for the term compT .

• For the rule for the application of labellings, marked δ, the premise for the typing of
the term is given by a checking judgement instead of an inferring judgement, as the
tree T can be inferred form the labelling. This is in contrast to the corresponding rule

185

for application of substitutions, where the context must be inferred from the inner term
before the substitution can be checked. Combined with the point above, this allows a
labelling applied to a comp term to be checked.

As an extra convenience feature, the tree context T generated from the labelling has a
name assigned to each position given by the letter p followed by its path. For example,
the first variable of the tree is given by p0, allowing the user to write an expression such
as p0{x{f}y}.

• The rule marked γ allows a substitution to be applied to a term over a tree context, by
converting the substitution to a labelling. This is mainly a convenience feature, as given
a term s where it can be inferred that the context of s is a tree T , it can be easier to give
the locally maximal arguments for s as a list rather than describing the labelling.

• Lastly, we explain each component of the rule for the typing of a substitution, marked ε.
We note that the first type in any Catt context, which in the rule is given by the type
A0, is always ⋆. Therefore, the type of the first term in a substitution σ should be equal
to ⋆JσK ≡ Ty(σ). In the rule, the type of the first term is given by B0, explaining its
presence as the type of the substitution that gets evaluated to ρ. We further note that
Ty(ρ) is simply the evaluation of B0, which is why X is checked against it.

Due to the choice to use de Bruijn levels instead of indices, weakening a term is the
identity, and so sJσK ≡ sJ〈σ, t〉K for any t. Therefore, by inspecting the typing rules for
substitutions in Catt, it can be proven that to type Γ ` σ : ∆, it is sufficient to show
that Γ ` xJσK : AJσK for all (x : A) ∈ ∆. Observing the rule ε, this translates to proving
that AiJ(B0, t0, . . . , tn)K = Bi recalling that B0 is the core syntax version of the type of
the substitution. These equations can be shown by proving that the evaluation of each
side is the same, but the evaluation of the left-hand side is given by evalρ(Ai) for each i,
and so for efficiency we factor out the calculation of ρ.

The typing rules in Figure 4.3 can easily be translated into an algorithm for mechanically
checking each of these typing judgements. In some cases, some equalities of normal forms are
left implicit, such as in the final rule concerning the typing of a non-singleton labelling, and
must be made explicit in the final algorithm.

Many of the choices for the form of these rules was made to improve the quality of error
messages. Each of these rules can fail for a variety of reasons, at which point an error is
created by converting the relevant syntax back to raw syntax using the to_raw functions so
that it can be displayed to the user. The use of Rust’s Result type, which allows each of these
functions to return either the well-formed core syntax or an appropriate error message, is
essential, and benefits greatly from the question mark syntax in Rust, which allows errors to
easily be propagated through the code.

We end this section by describing the function of each of the commands introduced in Sec-
tion 4.4.1. Each of these commands is run with a mutable reference to a signature Ψ. The
commands use this signature for typechecking, and may modify the signature.

The three def commands are used to add a new binding to the signature Ψ. For the first
command, which omits the context, the term s must be inferred, producing a core syntax
context, term, and type, which is inserted into the signature with key v and printed to the user.
The second command is given a raw context and so first checks this raw context to produce a

186

Ψ(v) = (U, t, A)
v ⇝ U ` top_lvl(v, t) : A

T ` A⇝ B = C (T, src(C), tgt(C)) ∈ O
coh[T : A]⇝ T ` coh[T : B] : B

α

id⇝ D1 ` id0 : var[0] →⋆ var[0]

s⇝ U ` t : A
Σ(s)⇝ Σ(U) ` Σ(t) : Σ(A)

s⇝ T ` t : A
T ` s⇝ t : A

U(i) = (v : A)

U ` v ⇝ vari : A Dn ` id⇝ idn : Un+1
Dn

T ` comp⇝ compT : UnT
β

s⇝ Γ : t : A U ` σ : Γ⇝ τ U ` Ty(σ) = B ⇝ ()

U ` sJσK⇝ tJτK : AJτK
T ` s⇝ t : A U ` from_subT (σ) : T ⇝M : B U ` Ty(σ) = B ⇝ ()

U ` sJσK⇝ tJMK : AJMK γ

T : s⇝ t : A U ` L : T ⇝M : B U ` Ty(L) = B ⇝ ()

U ` sJLK⇝ tJMK : AJMK δ

U ` _ = t⇝ ()

U ` s⇝ t : A

U ` s = evalidU(t)⇝ ()

U ` ⋆⇝ ⋆ = []

U ` s⇝ s′ : A U ` t⇝ t′ : B evalidUA = evalidUB

U ` s→ t⇝ s′ →A t
′ = (evalidUs

′, evalidUt
′) :: evalidUA

U ` s⇝ s′ : B U ` t⇝ t′ : C U ` A⇝ A′ = A′′ A′′ = evalidUB = evalidUC

U ` s→A t⇝ s′ →A′ t′ = (evalidUs
′, evalidUt

′) :: A′′

U ` A⇝ B = C

U ` A = C ⇝ ()

U ` s = s′ ⇝ () U ` t = t′ ⇝ ()

U ` s→ t = s′ →A t
′ ⇝ ()

U ` s = s′ ⇝ () U ` t = t′ ⇝ () U ` A = A′ ⇝ ()

U ` s→A t = s′ →A′ t′ ⇝ () U ` _ = C ⇝ ()

T ` ⇝ T ∅ ` ⇝ ∅
Γ ` ⇝ ∆ ∆ ` A⇝ B = C

Γ, (v : A) ` ⇝ ∆, (v : B)

U ` si ⇝ ti : Bi ρ := evalidU((B0, t0, . . . , tn))
evalidU(Bi) = evalρ(Ai) U ` flatten(X) = Ty(ρ)⇝ ()

U ` (X, s0, . . . , sn) : (v0 : A0), . . . , (vn : An)⇝ (B0, t0, . . . , tn)
ε

U ` flatten(x)⇝ A

U ` x : []⇝ t : evalidU(A)

U ` Li ⇝Mi : (si, si+1) :: A U ` flatten(xi) = si ⇝ ()

U ` x0{L0} · · · {Ln}xn+1 ⇝ s0{M0} · · · {Mn}sn+1 : A

Figure 4.3: Bidirectional typing rules.

187

core (possibly tree) context U, before checking the term s in this context. Checking the term
then produces a core syntax term and type, which are inserted into the signature along with
the contextU. The last def command proceeds as before, checking the context to get a context
U and then checking the term in U, producing a core term t and type B. The supplied type A
is then checked against evalidU(B). If this check succeeds, the key-value pair (v, (U, t, B)) is
added to the signature Ψ, identically to the previous case.

The normalise command is used to print the normal form of a term s. As with the final two
def cases, we begin by checking the context, and checking the term s in the resulting core
context to get term t of type A. Both t and A are then evaluated to normal form, quoted,
and converted back to raw syntax, before being pretty-printed to the user. The size command
calculates a primitive estimate of the complexity of a term (which we note is not the same as
the syntactic complexity given in Section 4.1.1) by counting the number of constructors in the
normal form. To run this command, the term s is checked as before, and converted to a normal
form term t. Then size(t) is then calculated by induction by the rules given in Figure 4.4 and
this size is printed to the user. The assert command checks both input terms s and t, and
evaluates the resulting core syntax terms to normal form to check that they are equal. None
of the normalise, size, or assert commands modify the signature Ψ.

size(coh[T : A]) = 1 + size(A) size(idn) = size(compT) = 1 size(varp) = 0

size(HJLK) = size(H) + size(L) size(L) =
∑
p:PathT

size(L(p))

size([(s0, t0), . . . , (sn, tn)]) =
n∑
i=0

(size(si) + size(ti))

Figure 4.4: Size of normal form syntax.

Finally, the import command reads the contents of the supplied file, parses it as a list of com-
mands, and runs each of these commands with the same signature. The tool has a command
line interface, which allows files to be loaded at startup, as well as providing a REPL (read-
eval-print loop) which parses one command at a time.

4.4.4 Examples
We now demonstrate the use of the tool with some examples. All the examples below can be
found in the /examples directory of the implementation code base [Ric24b].

We begin defining some standard operations that can be found in a monoidal category or
bicategory, which can be found in the file /examples/monoidal.catt. We start by defining
1-composition as a coherence:

def comp1coh [f,g] = coh [x{}{}z : x -> z] (f,g)

This example demonstrates the two ways of giving a tree context: in the def command we
give the context using the square bracket notation, which only labels the maximal elements,
and in the coherence it is given by the full labelling, as we require access to the variables x

188

and z (we note that all other variables of the context have been omitted). This example further
demonstrates that a substitution can be applied to a term over a tree context, where we have
only specified the locally maximal arguments.

This composite can of course also be given using the comp construction.
def comp1 [f,g] = comp
assert comp1coh(f,g) = comp1(f,g) in [f,g]

The tree for comp is inferred from the labelling [f,g]. The assert statement ensures that
these two ways of giving the 1-composition are equal in the theory. The assert passes even
with no reduction enabled, demonstrating the value of evaluation in the fully weak case. The
horizontal and vertical composites of 2-cells can be given similarly:
def horiz [[a],[b]] = comp
def vert [[a,b]] = comp

As the vertical composite is the suspension of 1-composition, it can also be given using implicit
suspension:
def vertsusp [[a,b]] = comp1[a,b]
assert vert(a,b) = vertsusp(a,b) in [[a,b]]

In this case, the labelling applied to comp1 is a tree of height 1 where the locally maximal
arguments are given by 2-dimensional terms. Type inference then deduces that the type com-
ponent of this labelling should be 1-dimensional, and hence evaluation causes the head term
comp1 to be suspended, making it equal to the composite vert, as demonstrated by the asser-
tion.

The unitors and associator are then given by the following coherences, using the id builtin for
the unitors:
def unitor_l = coh [x{f}y : comp1(id(x),f) -> f]
def unitor_r = coh [x{f}y : comp1(f, id(y)) -> f]
def assoc = coh [{f}{g}{h} : comp1(comp1(f,g),h) -> comp1(f,comp1(g,h))]

which allows definitions to be given for terms which witness the triangle and pentagon equa-
tions of monoidal categories:
def triangle = coh [x{f}y{g}z

: vert(assoc(f,id(y),g), horiz(id(f),unitor_l(g)))
->
horiz(unitor_r(f),id(g))

]

def pentagon = coh [v{f}w{g}x{h}y{i}z
: vert(assoc(comp1(f,g),h,i),assoc(f,g,comp1(h,i)))
->
comp [
horiz(assoc(f,g,h),id(i)),
assoc(f,comp1(g,h),i),
horiz(id(f),assoc(g,h,i))

]
]

189

We note the direct use of the comp constructor to easily provide a ternary composite without
needing to give a new top-level definition. Using the normalise command, it can be shown
that the triangle reduces to the identity with Cattsu normalisation enabled, and the pentagon
reduces to the identity with Cattsua normalisation enabled.

In the files /examples/eh.catt and /examples/eh-cyll.catt, we give two Catt proofs of
the Eckmann-Hilton argument (see Proposition 1.1.5). In Cattsu, these both normalise to the
following vastly smaller term:
def swap = coh [x{f{a}g}y{h{b}k}z

: comp[comp [[a],h], comp[g,[b]]]
->
comp[comp [f,[b]], comp[[a],k]]

]

The size command demonstrates that the Catt Eckmann-Hilton proof in /examples/eh.catt
has size 1807 whereas its Cattsu normalisation has a size of only 19. Due to the simplicity of
Eckmann-Hilton in Cattsu, we are able to give Cattsu and Cattsua proofs of the syllepsis (see
Section 4.2) in /examples/syllepsis-su.catt and /examples/syllepsis.catt respectively.
It can be verified that in Cattsua, the Cattsu proof of syllepsis, which has size 2745, reduces
to the Cattsua proof, which has size 1785.

4.4.5 Further work
We end the discussion of this implementation with some options for improving the tool. Each
of these suggestions could make the tool easier to use and interact with, which in turn extends
what can be achieved with it.

Currently, the tool completely relies on the bidirectional typing rules to perform all of its
type inference. While this is effective in some scenarios, for example labellings and implicit
suspension, it is lacking in others, such as the lack of implicit arguments in substitutions.

One could try to implement such features by adding meta-variables and a unification pro-
cedure to the typechecker. Contrary to the situation for the fully weak Catt, unification for
Cattsu and Cattsua is non-trivial. Suppose we wished to unify the following two terms:

f ∗0 g = h ∗0 i

where f ,g,h, and imay contain meta-variables. In Catt, this problem could be reduced to the
unification problems f = h and g = i. In Cattsu however, this cannot be done, as a potential
solution is f = h ∗0 i and g = id. It is likely that any unification that can be implemented
for Cattsu (and Cattsua) is quite limited, but an investigation into the limits of unification in
these settings could be valuable.

Even without a powerful unification algorithm, there are still instances where an argument
could be inferred by the tool. One such example is the Eckmann-Hilton term presented in the
previous section. This term is defined in the context:

(x : ⋆) (α : id(x)→ id(x)) (β : id(x)→ id(x))

Here, the x should be inferable as it is the 0-source of α. The tool currently has no way to
deduce this.

190

Separately, improvements could be made to the treatment of unfolding of top-level definitions
in the tool. Whenever a term is evaluated by the tool, any top-level definition is unfolded to its
normal form. This is not always desirable, as it means that error messages frequently contain
fully expanded terms, increasing the length and readability of terms in addition to losing the
information associated with the name given to the definition.

Conversely, the full unfolding of evaluation oftenmeans that we avoid evaluating terms before
displaying them to the user, even when a (partial) evaluation would simplify the term. A
notable example is that when giving a new definition, its type is not simplified before being
displayed, often resulting in terms such as p0{x{f}y}.

A better approach would likely add top-level definitions to the normal form syntax as a head
term, allowing their unfolding to be optional. One potential approach for efficient unfolding
is given by Kovács [Kov24].

Finally, the accessibility of the tool could be improved with proper editor integration, for ex-
ample by implementing the language server protocol (see https://microsoft.github.io/
language-server-protocol/), which would allow errors to be displayed directly in the edi-
tor, among other code refactoring features.

4.5 Models
Despite claiming that the type theories Cattsu and Cattsua model semistrict ∞-categories,
we are yet to discuss their models. In this section we recall the definition of a model for these
theories, and discuss some properties of these models.

The definitions of globular structure and globular sum were given in Chapter 1. Any variant
of CattR can be equipped with a globular structure by choosing the disc objects to be the
disc contexts and letting the source and target maps be given by the inclusions bδϵn(Dn+1)c for
ϵ ∈ {−,+}. We then define the category of models of Cattsu and Cattsua.

Definition 4.5.1. Recall that for any tame variant of CattR, the category CattpsR is defined
to be the restriction of the syntactic category CattR to the ps-contexts. We define the cat-
egory of models to be the full subcategory of the presheaf category on CattpsR consisting of
functors:

F : (CattpsR)
op → Set

such that F op preserves globular sums.

Each element of the category of models has the structure of a weak∞-category. For a model
F : (CattpsR)

op → Set, the set of n-cells is given by F (Dn), with source and target maps given
by the functions:

F (bδ−n−1(D
n)c), F (bδ+n−1(D

n)c) : F (Dn)→ F (Dn−1)

for which the globularity equations follow from the globularity of the inclusion maps. For
each term over a ps-context in CattR, an operation on each of the models can be derived. We
consider the action of the 1-composition term, given by C1[[],[]]. For the model F , this induces
an operation:

F ({bC1[[],[]]c}) : F (D1 ∨D1)→ F (D1)

191

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

Due to the preservation of globular sums, we have F (D1∨D1) = F (D1)qF (D0)F (D
1), which

is exactly the set of composable 1-cells, which the function above sends to their composition.
Similarly, the identity id(d0) induces a map F (D0) → F (D1), giving the identity on each
0-cell.

These operations can be combined, to get a compound operation of the following form:

F (D1) = F (D1)qF (D0) F (D
0) F (D1)qF (D0) F (D

1) F (D1)
id⨿F (id(d0)) F ({C1

[[],[]]
})

By the functoriality of F (and preservation of globular sums), this composite should be equal
to:

F ({C1[[],[]]} • 〈d1, idd+0 〉) : F (D
1)→ F (D1)

Therefore, if F is further a Cattsu model, then this operation must equal F (id) = id, enforcing
the semistrict properties of Cattsu onto the model.

Throughout the thesis, contexts in CattR have been viewed as semistrict∞-categories them-
selves. This viewpoint can be made precise by the Yoneda embedding, as for each context Γ of
CattR, we obtain the presheaf:

Y (Γ) : CattopR → Set

which sends ∆ to Hom(∆,Γ), the substitutions from ∆ to Γ. This map preserves all limits, so
in particular its opposite preserves the globular sums, meaning it can be restricted to a model
of CattR. Furthermore, the n-cells are given by substitutions Dn → Γ, which are precisely
the n-dimensional terms of Γ up to definitional equality.

Since every Catt term is also a CattR term, there is an evident functor:

KR : Catt→ CattR

which sends each context and substitution to its equivalence class in CattR. This functor can
be restricted to the functor:

K
ps
R : Cattps → CattpsR

which is the identity on objects. We now prove that this functor preserves globular sums.
By [BFM24, Lemma 64], the functor FinGlob → Catt from the category of finite globular
sets preserves globular sums, and so it suffices to show that the functor FinGlob → CattR
preserves globular sum. By [BFM24, Lemmas 25 and 29], it suffices to show that this functor
preserves the initial object and preserves pushouts along the inclusion maps Sn → Dn. The
empty context is clearly the initial object, and this is preserved by the above functor. For the
second property it suffices to show that:

Sn Γ

Dn Γ, (x : A)

{wk(Un)}

{A}

{A,x}

is a pushout for each Γ ` A in CattR. Suppose there is context∆ with substitutions σ : Γ→
∆ and {B, t} : Dn → ∆ such that:

{B} ≡ {wk(Un)} • {B, t} = {A} • σ ≡ {AJσK}
192

Then the universal map is given by 〈σ, t〉, with this map being well-formed as ∆ ` t : B
and B = AJσK. The uniqueness of this universal map is clear. Hence, the square above is
cocartesian. From this we get the following proposition.

Proposition 4.5.2. The functors KR and Kps
R preserve globular sums.

Proof. As the maps FinGlob → Catt and FinGlob → CattR preserve globular sums, the
globular sums in bothCatt andCattR are given exactly by the ps-contexts. The two functors
KR and Kps

R are the identity on ps-contexts, and hence preserve globular sums.

Due to this proposition, any model of CattR can be also seen as a model of Catt, by precom-
posing with the functorKps

R . This is to be expected, as intuitively every semistrict∞-category
should also be a weak∞-category, where certain operations are given by identities.

4.5.1 Rehydration for pasting diagrams
We have shown a way in which every model of CattR can be viewed as a model of Catt. In
this section we prove that this mapping from CattR models to Catt models is injective. This
implies that being semistrict is a property of the model, a particular Catt model can only arise
from a unique CattR model, if such a CattR model exists.

We prove this result by demonstrating a partial conservativity result for CattR, which we
call rehydration for pasting contexts. Rehydration refers to the process of taking a term in the
semistrict theory, and inserting the necessary coherence morphisms into the term such that it
can be typed in Catt. We discuss the difficulties involved with rehydrating an arbitrary term
in Section 4.5.2, but for now we are only concerned with the simpler case of rehydrating a
term t : TermΓ where Γ is a ps-context. We work towards the following theorem:

Theorem 4.5.3. Let R be a tame equality rule set that satisfies the support condition and
has pruning, disc removal, and endo-coherence removal. Then for any ps-context ∆ and term
t : Term∆, there is a Catt term s : Term∆ such that ∆ ` s = t in CattR.

We begin with an example for Cattsu. Take the pasting context given by the following dia-
gram:

∆ = w x y z
f g h

Theassociatorα is a Cattsu normal form term over∆, andwe can further define the term:

η : id((f ∗ g) ∗ h)→ αf,g,h ∗ α−1
f,g,h

as a single coherence over ∆. This term is also a Cattsu normal form. Finally the term:

• • •
id id

α∗α−1 α∗α−1

α∗α−1

η η

η−1

is a Cattsu normal form term over a pasting context, which is not well-formed in Catt. Such
a term can be rehydrated by inserting the equivalence id ∼= id ∗ id into the centre of the term.

193

Performing a similar construction with the interchanger instead of the associator creates a
Cattsua normal form term over a pasting context which is not a Catt term.

We now proceed with the proof of Theorem 4.5.3. We introduce three operations, which are
mutually defined on terms of CattR over pasting contexts.

• The rehydration R(t) of a term t recursively rehydrates all subterms of t, and then pads
the resulting term. For any CattR term t, the rehydration is a Catt term over the
same context. For any term t, we call R(N(t)) its rehydrated normal form, where N is
the function taking any term to its normal form. We similarly define the rehydration
R(A) of a typeA over a pasting context andR(σ) of a substitution σ whose domain and
codomain are pasting contexts.

• The padding P (t) of a Catt term t, which composes the term with coherences to ensure
that its boundaries are in rehydrated normal form.

• The normaliser ϕ(t), a coherence term from t to its rehydrated normal formR(N(t)) for
any Catt term t.

We give formal definitions for each of these, which we define mutually with proofs of the
following statements, where we assume ∆ and Γ are pasting contexts:

(1) Suppose ∆ `R t : A. Then ∆ ` R(t) : R(N(A)). Similarly, if ∆ `R A or ∆ `R σ : Γ,
then ∆ ` R(A) and ∆ ` R(σ) : Γ.

(2) For a CattR well-formed term t, type A, and substitution σ, we have ∆ ` t = R(t),
∆ ` A = R(A), and ∆ ` σ = R(σ) in CattR.

(3) Suppose ∆ ` t : A for a Catt term t, then Pk(t) is well-formed for k ≤ dim(t) and
∆ ` P (t) : R(N(A)).

(4) Suppose t is a well-formed Catt term. Then for each k ≤ dim(t), Pk(t) = t.

(5) If ∆ ` t : R(N(A)) in Catt, then ∆ ` ϕ(t) : t→A R(N(t)).

(6) Let t be a well-formed Catt term over a pasting context. Then ϕ(t) = id(t).

Each of these definitions and proofs are given by an induction on dimension and subterms,
ensuring that they are well-founded.

We begin with the definition of the rehydrated term, type, and substitution.

Definition 4.5.4. Let ∆ and Γ be a pasting context. For a term t or type A over ∆, or a
substitution σ : Γ→ ∆, we define the rehydrations:

R(t) : Term∆ R(A) : Type∆ R(σ) : Γ→ ∆

by mutual recursion. For a variable x, we let R(x) = x, and for a coherence term we define:

R(Coh(Γ ;A)[σ]) = P (Coh(Γ ;R(A))[R(σ)])

For types and substitutions, we recursively apply the rehydration to all subterms.

194

To define the padding, we need the composites over certain trees T nk for k < n which are
defined by:

T n0 = [[], Dn−1, []] T n+1
k+1 = Σ(T nk)

As an example T 3
1 produces the following context:

• •

Thecomposite over this context allows us to “fix” the 1-dimensional boundary of a 3-dimensional
term.

Definition 4.5.5. Let t be an n-dimensional term of a pasting diagram∆. Define its padding
P (t) to be equal to Pn(t) where:

P0(t) = t Pk+1(t) = CnTn
k
J〈ϕ(srck(Pk(t)))−1, Pk(t), ϕ(tgtk(Pk(t)))〉K

where srck and tgtk give the k dimensional source and target of a term.

Consider the termα : f →x→⋆y g. As an example, we build the following sequence of paddings:

P0(α) x y

f

g

α

P1(α) R(N(x)) x y R(N(y))

f

g

ϕ(x) ϕ(y)
α

P2(α) R(N(x)) x y R(N(y))
f

g
ϕ(x) ϕ(y)

R(N(g))

R(N(f))

α

ϕ(ϕ(x)−1∗g∗ϕ(y))

ϕ(ϕ(x)−1∗f∗ϕ(y))

We lastly define the normaliser coherences. As these are each built from a coherence construc-
tor with the rule for equivalences, they can all be inverted.

Definition 4.5.6. Let t be a term of a pasting diagram ∆. By Corollary 4.2.11, Supp(t) is a
pasting diagram, and we let it be the inclusion Supp(t)→ ∆. Then we define the normaliser
ϕ(t):

ϕ(t) = Coh(Supp(t) ; t→R(N(t)))[it]

By assumption, R(N(t)) = N(t) = t and so Supp(R(N(t))) = Supp(t), making the above
term well-formed.

195

We now prove the required properties, starting with statement (1). The statements for types
and substitutions follow by a simple induction using the case for terms, as if A = B then
R(N(A)) = R(N(B)) (as N(A) = N(B)). The case for a variable is also trivial, so assume
that:

∆ `R Coh(Γ ;B)[σ] : A

Then it follows from induction on subterms that Γ ` R(B) and ∆ ` R(σ) : Γ, and so:

∆ ` Coh(Γ ;R(B))[R(σ)] : R(B)JR(σ)K
Then by induction on statement (3), we get:

∆ ` P (Coh(Γ ;R(B))[R(σ)]) : R(N(R(B)JR(σ)K))
By induction on statement (2), we have R(B)JR(σ)K = BJσK. By inspection of the origi-
nal typing derivation, we have BJσK = A, and so R(N(R(B)JR(σ)K)) ≡ R(N(A)), as re-
quired.

Now consider statement (2). The cases for types and substitutions follow by an easy induction
from the result for terms. Since the case for variables is trivial, we restrict to the cases for the
coherence terms, where we must prove that:

Γ `R Coh(∆ ;A)[σ] = P (Coh(∆ ;R(A))[R(σ)])

By (1),Coh(∆ ;R(A))[R(σ)] is a well-formed Catt term, and so by (4) and induction on subterms
we have:

P (Coh(∆ ;R(A))[R(σ)]) = Coh(∆ ;R(A))[R(σ)] = Coh(∆ ;A)[σ]

For statement (3), we let ∆ ` t : A and prove for each k that Pk(t) is well-formed and that
srcm(Pk(t)) ≡ R(N(srcm(t))) and tgtm(Pk(t)) ≡ R(N(tgtm(t))) for m ≤ k. We proceed by
induction on k. The case for k = 0 is trivial, so we must prove that Pk+1(t) is well-formed,
which is the term:

CnTn
k
J〈ϕ(srck(Pk(t)))−1, Pk(t), ϕ(tgtk(Pk(t)))〉K

By (5), noting that the inductive hypothesis on k implies that the types of srck(Pk(t)) and
tgtk(Pk(t)) are in rehydrated normal form, we have that the normalisers are well-typed. There-
fore, Pk+1(t) is well-formed by the previous fact and the inductive hypothesis on k. By simple
calculation it follows that:

srcm(Pk(t)) ≡ srcm(Pm(t)) ≡ src(ϕ(srcm(t))−1) ≡ R(N(srcm(t)))

with a similar equation holding for the target. It then follows that∆ ` P (t) : R(N(A)).

Statement (4) holds by a simple induction on k, using statement (6) to reduce each normaliser
to an identity, and then using pruning and disc removal to get the equality:

CnTn
k
J〈id(srck(Pk(t))), Pk(t), id(tgtk(Pk(t)))〉K = Pk(t)

which along with the inductive hypothesis on k is sufficient.

For statement (5), we assume ∆ ` t : R(N(A)). Then, by (1) and the preservation rule, we
have ∆ ` ∆ ` R(N(t)) : R(N(R(N(A)))) ≡ R(N(A)), where the equality follows from (2)

196

and the idempotency of the normal form functor. The typing for the normaliser then trivially
follows, as t and R(N(t)) are full in Supp(t).

For statement (6), we apply statement (1) to get that t = N(t) = R(N(t)). Therefore:

ϕ(t) ≡ Coh(Supp(t) ; t→R(N(t)))[it]

= Coh(Supp(t) ; t→t)[it]

= id(t)JitK by endo-coherence removal
≡ id(t)

This completes all parts of the definitions and proofs. Then for any well-formed CattR term
t, R(N(t)) is a well-formed Catt term with R(N(t)) = t in CattR completing the proof of
Theorem 4.5.3. Moreover, if t = t′ thenR(N(t)) ≡ R(N(t′)), and so the rehydrated of CattR
terms over pasting contexts can be chosen to respect CattR equality. From this we get the
following corollary.

Corollary 4.5.7. Semistrictness is a property. Let R is a tame equality rule set satisfying
the support and preservation conditions in addition to having pruning, disc removal, and endo-
coherence removal. If F and G are CattR models such that:

F ◦Kps
R = G ◦Kps

R

then F = G.

Proof. SinceKps
R is the identity on objects, it follows that F andGmust be equal on objects.

Now let Γ and ∆ be pasting diagrams, and let Γ `R σ : ∆. Then by Theorem 4.5.3 we have,
Γ ` R(σ) : ∆ and so:

F (K
ps
R (R(σ))) = G(K

ps
R (R(σ)))

but Kps
R is simply an inclusion, so F (R(σ)) = G(R(σ)) and since R(σ) = σ in CattR, we

have F (σ) = G(σ). The substitution σ was arbitrary, so F = G as required.

The above result holds in particular for the equality rule sets su and sua, meaning that a model
of Catt can be a model of Cattsu or Cattsua in at most one way.

4.5.2 Towards generalised rehydration
The rehydration result of the previous section can be viewed as a partial conservativity result,
stating that in a pasting context, Cattsu and Cattsua have the same expressive power as Catt.
The original motivation of semistrictness was to strictify parts of the theory without losing
the expressiveness of the fully weak setting. We would therefore hope that the rehydration
results of Section 4.5.1 extend to arbitrary contexts.

Such a result would be a powerful tool for constructing terms in a weak setting; a term could
be constructed by constructing it in the semistrict setting, before applying rehydration to the
resulting term to get term in the fully weak setting. Such a techniquewould allow a Catt proof
of Eckmann-Hilton to be constructed mechanically from the vastly simpler Cattsu Eckmann-
Hilton proof, or even give a proof of the Syllepsis in Catt, for which no proof has been given
as of writing.

197

By observing the proof of Theorem 4.5.3, we see that the main part that would need replacing
for a general rehydration result is the construction of the normalisers, as we can no longer rely
on the source and target term of our normaliser living over a pasting diagram that allows the
construction of a single coherence. A natural way to proceed is to attempt to build a normaliser
ϕ(t) : t→ R(N(t)) by recursion on the reduction sequence t⇝∗ N(t). We consider a context
with x : ∗ and a scalar α : id(x)→ id(x), and consider the reduction by pruning:

α ∗0 id(x)⇝ (α)

where (α) is the unary composite on α. We immediately encounter two problems:

• For each individual reduction, the source and target of the reduction may not have the
same type. In the example above, the source has type id(x) ∗ id(x)→ id(x) ∗ id(x), but
the target has type id(x)→ id(x). A normaliser between these two terms can therefore
not be directly constructed.

• If the source term is padded such that it has the same type as the target term, we can
run into a separate problem. Consider the reduction given above again. The following
normaliser can be formed:

Coh(D2 ; ρ−1

d−1
∗1(d2∗0id(d+0))∗1ρd+1

→(d2))
[〈{α}〉]

which has source given by the padded term:

x x x

id(x)

id(x)
id(x)

id(x)

id(x)

α

ρid(x)

ρid(x)

However this term is padded by the right unitor on each side, which is not the canonical
normaliser from id(x) ∗ id(x) to id(x), the unbiased unitor.

The reduction above was not only chosen to demonstrate both of these problems, but was
chosen as it is the problematic reduction that is encountered if one tries to rehydrate the
Eckmann-Hilton term from Cattsu. To give a proof of Eckmann-Hilton, one reaches a critical
point where a left unitor and right unitor on the identity must be cancelled out, highlighting
the second of the two problems.

To solve the second problem one could attempt to prove that for any two reductions paths
from t to N(t), that there is a higher cell between the normalisers generated from each reduc-
tion path, critically relying on the confluence proof for the theory to modularise the problem
into finding fillers for each confluence diamond. Such an approach seems infeasible for the
following reasons: To find fillers for a confluence diamond, we presumably must already know
the form of all rehydrations in the dimension below, which themselves could depend on fill-
ing confluence diamonds of the dimension below. This seems to necessitate rehydrating on a
dimension by dimension basis, making the full rehydration problem infeasible. It is also likely
that at some point it would be necessary to show that two different fillers of a confluence
diamond have a higher cell between them, leading to some form of ∞-groupoid flavoured

198

confluence problem. Such a problem also seems infeasible with the tools currently available
to us.

An alternative approach could be to show that the “space” of all rehydrations is contractible.
This can be made precise in the following way. Let t be a CattR term. Then consider the
globular set whose 0-cells are Catt terms s which are equal to t in CattR, 1-cells are given
by Catt terms f : s→ s′ which are equal to id(t) in CattR, in general n-cells given by Catt
terms that are equal to idn(t). The contractability of such a globular set is exactly the property
needed for rehydration, as it gives the existence of a 0-cell s which gives the rehydration, and
witnesses the essential uniqueness of this rehydration.

Such a contractability proof can be given when the term t is a term of a pasting diagram, as any
higher cells can be given by a simple coherence. This allows us to fix the padding in the exam-
ple above, observing that the right unitor is equivalent to the unbiased unitor. It is however
unclear how such a contractability proof could be extended to arbitrary contexts.

We now turn our attention to the first problem presented above. One method for tackling this
problem is to give normalisers as a cylindrical equivalence instead of a regular equivalence. A
cylindrical equivalence can be viewed as the canonical notion of equivalence between two ob-
jects of different types. We introduce the first few dimensions of cylinder terms. A 0-cylinder
is simply a 1-dimensional term. A 1-cylinder from a cylinder f : w → x to a cylinder g : y → z
can be defined by the square:

x z

w y

f g

a

a′

where the central arrow has type a ∗ g → f ∗ a′. If such a cylinder was invertible, which is
the case when a, b, and the two-dimensional cell are invertible, then it would be a cylindrical
equivalence andwould witness the equivalence of f and g. Suppose two 1-cylindersα : f → g
and β : g → h as below:

x z v

w y u

f g

a

a′

h

b

b′

Then a composite cylinder f → h could be formed by letting the front “face” be given by a ∗ b,
the back “face” be given by a′ ∗ b′ and the filler given by a combination of associators and
whiskerings of the two fillers in the diagram. A 2-cylinder could be given by the following
diagram:

• •

• •

where the top and bottom faces of this diagram are 1-cylinders, and the whole digram should
be filled by a 3-dimensional termwith appropriate source and target. The shape of this diagram

199

gives the name to this construction.

When using cylinders to represent the normalisers in a rehydration process, the inductive
step for coherences would require a cylinder to be generated from a cylindrical version of the
substitution attached to the coherence. We have seen that this can be donewhen the coherence
is given by 1-composition, but achieving full rehydration would involve giving cylindrical
versions of every operation in Catt. No such proof has been given for any variety of globular
weak∞-categories.

We offer an alternative solution which avoids defining cylinder composition, which we call
rehydration by dimension. From an equality rule set R, we can form the rule sets Rn which
consists of the rules in (Γ, s, t) ∈ R such that dim(s) = dim(t) ≤ n. Rehydration by dimen-
sion attempts to rehydrate an n-dimensional term t by constructing terms tn, . . . , t0 such that
ti is a term which is well-formed in CattRi

, creating a rehydration sequence:

CattRn → CattRn−1 → · · · → CattR1 → CattR0

The term tn is given immediately by t, and t0 is then a term of CattR0 = Catt, giving the
rehydration of t. The key insight of this method is that when generating the normaliser for a
particular k-dimensional generating rule s ⇝ t, we know by the preservation property that
the types of s and t are equal, and so are further equal in CattRk−1

. By factoring through these
partial rehydrations, the normaliser of a dimension k generating rule only has to be valid in
CattRk−1

, meaning that the normalisers can again be given by regular equivalences.

Unfortunately, this method does not avoid the need to define new classes of operations in
Catt, as we could be required to prove that arbitrary Catt operations are natural in their
lower-dimensional arguments. Consider terms f : x → y and g : y → z and suppose
the CattR1 normal form of y is y′ with normaliser ϕ(y). Then, during a rehydration proof
to CattR0 , it may be required to give a normaliser from f ∗ g to (f ∗ ϕ(y)) ∗ (ϕ(y)−1 ∗ g),
effectively requiring us to prove that 1-composition is natural in its central 0-cell. Similarly to
the case with cylinders, in this case for 1-composition, such a normaliser can easily be given,
but we possess no way of creating such naturality arguments on arbitrary coherences.

The proofs of Eckmann-Hilton given in Section 4.4.4 give an example of the result of each of
these methods, with the proof in /examples/eh.catt proceeding by “rehydration by dimen-
sion”, and the proof in /examples/eh-cyll.catt using cylinders. In both proofs, the only
example of the second problem we encounter is proving that the left and right unitors on the
identity are equivalent to the unbiased unitor. For the cylinder proof, the composition of 1-
cylinders is used and is given by the term cyl_comp, which is then implicitly suspended by
the tool. The rehydration by dimension proof needs a naturality move like the one described
above, which is given by the term compat_move.

4.6 Future ideas
In this final section, we collect together some ideas for the continuation of this work, includ-
ing ideas for different semistrict theories based on CattR, and modifications to the existing
theories. Some ideas for future avenues of research have already been discussed, such as the
potential improvements to the implementation discussed in Section 4.4.5, and the discussion
of full rehydration given in Section 4.5.2, which we will not repeat here.

200

Further results for Cattsua The metatheory of Cattsua is more complicated than the cor-
responding metatheory of Cattsu, though at first glance the relative increase in power does
not match this complexity. The jump from Catt to Cattsu vastly simplified the proof of
Eckmann-Hilton, allowed the syllepsis to be proven, and lead to results such as disc triviali-
sation. In contrast, Cattsua provides no further simplification to Eckmann-Hilton and only
slightly simplifies the syllepsis, removing some associators from the proof.

One potential utility of Cattsua could be simplifying the composites of cylinders, as briefly
introduced in Section 4.5.2. Consider the following diagram from that section which contains
two composable 1-cylinders.

x z v

w y u

f g

a

a′

X
h

b

b′

Y

In Catt, the 1-composite of these cylinders is a term (a ∗ b) ∗ h→ f ∗ (a′ ∗ b′) given by:

αa,b,h ∗1 (a ∗0 Y) ∗1 α−1
a,g,b′ ∗1 (X ∗0 b

′) ∗ αf,a′,b′

where each α term is an associator. This would of course simplify in Cattsua to (a ∗0 Y) ∗1
(X ∗0 b′). Such a simplification could make it simpler to define higher cylinder coherences,
such as associator for 1-cylinders, which would be trivial in Cattsua, but far more involved in
Catt.

Further future work for Cattsua could involve the search for an analogue of disc trivialisation
for Cattsua. We would expect there to be a more general class of contexts that are trivialised
by Cattsua but are not trivialised. The contexts present in the cylinder contexts presented
above could form a starting point for such a study.

A separate avenue for further study is to explore the links between Cattsua and more graphi-
cal presentations of semistrict∞-categories. String diagrams are a common graphical method
for working with monoidal categories and bicategories [Sel11], and their higher-dimensional
counterparts, such as those implemented in the tool homotopy.io, can be viewed as strictly
associative and unital finitely presented∞-categories, much like contexts of Cattsua. Trans-
lation results in either direction between these two settings, while highly non-trivial due to
the contrast in the way each system approaches composition, would be valuable.

Generalised insertion The conditions given for insertion in Section 3.4 were not the most
general conditions possible. In this section, we stated that to perform insertion we required
an insertion redex (S, P, T,U, L,M), and one of the conditions of this insertion redex was
that:

L(P) ≡ C lh(P)
T JMK

It turns out that it is sufficient to give the weaker condition that the locally maximal argument
is a coherence where the type contained in the coherence is sufficiently suspended:

L(P) ≡ Coh(T ; Σbh(P)(A))[M]

As Cn+1
Σ(T) ≡ Σ(CnT), and the original condition required that th(T) ≥ bh(P), this alternative

condition is a strict generalisation of the previous condition. Under the new condition, the
exterior labelling must be modified. It firstly must take the type A as an argument. The case

201

for P = [k] is then modified such that κS,[k],T,A (noting the extra type subscript) is given
by:

[S0, . . . , Sk−1] ++ T ++ [Sk+1, . . . , Sn]

[S0, . . . , Sk−1] ∨ ΣSk ∨ [Sk+1, . . . , Sn]

{A,Coh(T ;A)[idT]}id id

when S = [S0, . . . , Sn]. The inductive step of the exterior labelling then relies on the type
A being sufficiently suspended to proceed, just as the original version depends on the trunk
height of T being sufficient to proceed (we note that the trunk height condition is still needed
in this generalisation). For the necessary typing judgements to be satisfied, we must have
src0(A) ≡ fst(bT c) and tgt0(A) ≡ snd(bT c), but no other extra condition is necessary.

In some ways, this definition of insertion is more natural than the definition given earlier. We
no longer rely on the syntactic condition of the locally maximal argument being a standard
coherence, only relying on the far weaker suspendability property. In the proof for confluence
of Cattsua, a large focus was cases where a reduction modified a standard coherence into a
term which was no longer a standard coherence. Cases like these do not happen with gen-
eralised insertion, as reductions do not break the suspendability property. More generally, a
confluence proof for generalised insertion does not require any proof about the interaction of
insertion with boundary inclusion maps and standard coherences (given in Section 3.4.3 for
the original definition).

Unfortunately, this generalised form of insertion cannot be directly used in Cattsua without
breaking confluence. Let Γ be the following context given by the following diagram:

• • • •
g

f

i

h

γ δ α β
ϕ

and consider the terms:

I = (α ∗0 h) ∗1 (g ∗0 β)
E = Coh(Supp(I) ; I→I)[id]

X = ϕ ∗0 E

We now have the following critical pair: X can reduce by inserting the locally maximal argu-
ment E, as the branch has branching height 0 making the suspendability condition vacuous,
but E also reduces by endo-coherence removal. By performing the generalised insertion we
obtain the coherence:

Coh(Γ ; γ∗0I→δ∗0I)[id]

LetW (x, y, z) refer to the standard composite over the diagram:

• • •x

y

z

202

Then the coherence term above admits further cell reductions which convert the composites
γ∗0I and δ∗0I toW (γ, (α∗0h), (g∗0β)) andW (δ, (α∗0h), (g∗0β)). The resulting term reduces
no further. If the endo-coherence removal is performed, then E reduces to id(I), which can
be pruned from the original composite. After further reductions, we obtain a coherence over
the context ∆ given by the following diagram:

• • •x y

B

C

A

In particular, the result of these reductions is the following coherence:

Coh(∆ ;W (x,B,C)→W (y,B,C))[〈ϕ, (α ∗0 h), (g ∗0 β)〉]

which admits no further reductions, hence breaking confluence. It is even unclear which
of these reduction paths is the more canonical for such a system, the first moves the com-
plexity of I to the type in the coherence, whereas the second keeps the complexity of I in
the arguments of the coherence. Conjecturally, one could consider generalisations to endo-
coherence removal which could factor out the common structure of W (γ, (α ∗0 h), (g ∗0 β))
andW (δ, (α ∗0 h), (g ∗0 β)), reducing the result of the first reduction path to the result of the
second reduction path, though we have not explored any such definition.

Afurther strictification toCattsua Douglas andHenriques give an explicit representation
a Gray category [DH16, Definition 2.8], which can be used as a direct point of comparison to
Cattsua, as Gray categories are semistrict 3-categories with strict unitors and associators. The
weak structure in their presentation of Gray categories is given by an invertible 3-cell they call
switch, which has the same form as the Catt term which we called swap in Section 4.2.

In their paper, all of the equalities between 2-cells are generated by a set of axioms [S2-4]
to [S2-15]. Each of these equalities is contained in the definitional equality of Cattsua, with
the exception of [S2-9] and [S2-10], which witness a compatibility between whiskering and
vertical composition. We consider the axiom [S2-9], as [S2-10] can be treated symmetrically.
Let ∆ be the context given by diagram:

• • •f

α

β

and consider the following terms of ∆:

(f ∗0 α) ∗1 (f ∗0 β) f ∗0 (α ∗1 β)

while the second term reduces to the standard composite over ∆, the first does not reduce, as
no insertion can be performed due to the condition on trunk height, and hence these two terms
are not equal in Cattsua, unlike in Gray categories. Although it could be argued that these
axioms reside in the interchange family of laws for∞-categories, one could attempt to define
a stricter version of Cattsua which incorporates these equalities, with the aim of proving that
3-truncated models of this stricter type theory are equivalent to Gray categories.

203

Strict interchange In contrast to the reductions in this thesis which strictify units, one
could instead consider reductions that strictify all composition, making the associativity and
interchange laws strict, leaving only units weak. Such a form of semistrictness is often called
Simpson semistrictness, due to a conjecture of Simpson [Sim98] that leaving units weak is suf-
ficient to retain the full expressiveness of weak∞-categories.

To achieve this, one could try an approach similar to insertion of merging arguments of a
term into the head coherence, when all the involved terms are standard coherences. To be
able to strictify terms such as the swap term given in Section 4.2, the trunk height condition
of insertion must be dropped. This immediately leads to composites over contexts which are
not pasting diagrams: Consider the context generated by the diagram:

x y z

g

f

i

h

α β

and then consider the following composite in this context:

α ∗0 ((β ∗0 id(id(z))) ∗1 ρi)

where ρi is the right unitor on i. Allowing a more general form of merging would lead to this
term becoming a composite of the following form:

x y z z

g

f

i

h

id

i

id

α

β

ρi

id2

Although this diagram is not a pasting diagram, as it is not a globular set, we would still expect
it to fulfil a similar contractability property to the one pasting diagrams do. One may therefore
be lead to believe that strict interchange could be achieved in a type theory similar to Catt by
allowing a more general class of pasting diagrams. This, however, does not work. We consider
the following counterexample due to Forest [For22]: let Γ be the context generated by the
following diagram.

• • •

h

f

g

k

i

j

α α′

β β′ δ δ′

γ γ′

and let ∆ = Γ, (X : α ∗0 δ → α′ ∗0 δ′), (Y : β ∗0 γ → β′ ∗0 γ′). We then have the following
distinct composites: 

f ∗0 γ
∗1
X
∗1

β ∗0 k

 ∗2

α′ ∗0 i
∗1
Y
∗1

h ∗0 δ′

 6∼=

α ∗0 i
∗1
Y
∗1

h ∗0 δ

 ∗2

f ∗0 γ′
∗1
X
∗1

β′ ∗0 k


204

which are intuitively the composite of X and Y in either order, where X and Y have been
whiskered with the appropriate terms. We note that the matrix notation above is only used
to aid comprehension, and does not represent the application of any matrix operations. The
approach described above of merging together composites would lead to both of the above
composites ofX andY being reduced to the same composite over∆, contradicting the viability
of such an approach.

An alternative, non-rewriting based approach could be defined by the following equality rule:{
(Γ, sJσK, tJσK) ∣∣∣∣ s and t are pure composite terms,

s = t in a strict∞-category

}
where a pure composite is a term constructed only using standard composites. Such an ap-
proach avoids the counter example above, as the two composites of X and Y are not equal in
a strict∞-category, and so would not be equated in the type theory generated by this equality
rule set.

We note that due to an algorithm ofMakkai [Mak05], which is also described and implemented
by Forest [For21], it can be decided whether terms s and t are equal in a strict ∞-category.
Therefore, to decide equality of the above system, we need a method of finding the correct
decomposition of a term into a substitution applied to a purely compositional term. We con-
jecture that there exists a factorisation system on Catt with the left class of morphisms given
by purely compositional substitutions, substitutions whose contained terms are all pure com-
posites, which could be used for this purpose. We leave all details of such a construction for
future work.

205

206

Bibliography

[Abe13] Andreas Abel.
“Normalization by evaluation: Dependent types and impredicativity”.
In: Habilitation. Ludwig-Maximilians-Universität München (2013).

[Ara10] Dimitri Ara.
“Sur les∞-groupoides de Grothendieck et une variante∞-catégorique”.
PhD thesis. Université Paris Diderot, 2010.

[Bar91] Michael Barr. “*-Autonomous categories and linear logic”.
In: Mathematical Structures in Computer Science 1.2 (July 1991), pp. 159–178.
issn: 1469-8072. doi: 10.1017/s0960129500001274.

[Bat98a] Michael A Batanin. “Computads for finitary monads on globular sets”.
In: Contemporary Mathematics 230 (1998), pp. 37–58. issn: 0271-4132.

[Bat98b] Michael A Batanin. “Monoidal globular categories as a natural environment for
the theory of weak n-categories”.
In: Advances in Mathematics 136.1 (1998), pp. 39–103.

[BCW13] Michael Batanin, Denis-Charles Cisinski, and Mark Weber.
“Multitensor lifting and strictly unital higher category theory”.
In: Theory and Applications of Categories 28 (2013), pp. 804–856.

[BD95] John C. Baez and James Dolan.
“Higher-dimensional algebra and topological quantum field theory”.
In: Journal of Mathematical Physics 36.11 (Nov. 1995), pp. 6073–6105.
issn: 1089-7658. doi: 10.1063/1.531236.

[Ben20] Thibaut Benjamin.
“A type theoretic approach to weak w-categories and related higher structures”.
PhD thesis. Institut polytechnique de Paris, 2020.

[BFM24] Thibaut Benjamin, Eric Finster, and Samuel Mimram.
“Globular weak ω-categories as models of a type theory”. 2024.
arXiv: 2106.04475 [cs.LO].

[BM24] Thibaut Benjamin and Ioannis Markakis.
“Opposites of weak ω-categories and the suspension and hom adjunction”. 2024.
arXiv: 2402.01611 [math.CT].

[Bou16] N. Bourbaki. Topologie algébrique. Springer Berlin Heidelberg, 2016.
isbn: 9783662493618. doi: 10.1007/978-3-662-49361-8.

[Bru16] Guillaume Brunerie.
“On the homotopy groups of spheres in homotopy type theory”.
PhD thesis. Université Nice Sophia Antipolis, 2016.

[Bur93] Albert Burroni.
“Higher-dimensional word problems with applications to equational logic”.
In: Theoretical computer science 115.1 (1993), pp. 43–62.

207

https://doi.org/10.1017/s0960129500001274
https://doi.org/10.1063/1.531236
https://arxiv.org/abs/2106.04475
https://arxiv.org/abs/2402.01611
https://doi.org/10.1007/978-3-662-49361-8

[BV17] Krzysztof Bar and Jamie Vicary.
“Data structures for quasistrict higher categories”. In: Proceedings of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2017,
pp. 1–12. doi: 10.1109/LICS.2017.8005147.

[CG07a] Eugenia Cheng and Nick Gurski. “The periodic table of n-categories for low
dimensions I. Degenerate categories and degenerate bicategories”.
In: Categories in algebra, geometry and mathematical physics. Vol. 431.
Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 143–164.
isbn: 978-0-8218-3970-6. doi: 10.1090/conm/431/08270.

[CG07b] Eugenia Cheng and Nick Gurski. “The periodic table of n-categories for low
dimensions II: degenerate tricategories”. 2007. arXiv: 0706.2307 [math.CT].

[CHH+24] Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and
Jamie Vicary.
“homotopy.io: a proof assistant for finitely-presented globular n-categories”.
2024. arXiv: 2402.13179 [cs.LO].

[DD21] Christoph Dorn and Christopher L. Douglas. “Framed combinatorial topology”.
2021. arXiv: 2112.14700 [math.GT].

[DFM+24] Christopher J. Dean, Eric Finster, Ioannis Markakis, David Reutter, and
Jamie Vicary. “Computads for weak ω-categories as an inductive type”. 2024.
arXiv: 2208.08719 [math.CT].

[DH16] Christopher L. Douglas and André G. Henriques. “Internal bicategories”. 2016.
arXiv: 1206.4284 [math.CT].

[DK21] Jana Dunfield and Neel Krishnaswami. “Bidirectional Typing”.
In: ACM Comput. Surv. 54.5 (May 2021). issn: 0360-0300.
doi: 10.1145/3450952.

[Dor18] C Dorn. “Associative n-categories”. PhD thesis. University of Oxford, 2018.
[Dyb96] Peter Dybjer. “Internal type theory”. In: Types for Proofs and Programs.

Ed. by Stefano Berardi and Mario Coppo.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 120–134.
isbn: 978-3-540-70722-6.

[EH62] Beno Eckmann and Peter J Hilton. “Group-like structures in general categories
I multiplications and comultiplications”.
In: Mathematische Annalen 145.3 (1962), pp. 227–255.

[FM17] Eric Finster and Samuel Mimram.
“A type-theoretical definition of weak ω-categories”. In: Proceedings of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2017,
pp. 1–12. doi: 10.1109/LICS.2017.8005124.

[For21] Simon Forest. “Computational descriptions of higher categories”.
PhD thesis. Institut Polytechnique de Paris, 2021.

[For22] Simon Forest. “Unifying notions of pasting diagrams”.
In: Higher Structures 6.1 (2022), pp. 1–79. doi: 10.21136/HS.2022.01.

[FRV24] Eric Finster, Alex Rice, and Jamie Vicary.
“A Syntax for Strictly Associative and Unital ∞-categories”. In: Proceedings of
the 39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
2024. Forthcoming.

[FRVR22] Eric Finster, David Reutter, Jamie Vicary, and Alex Rice.
“A type theory for strictly unital ∞-categories”. In: Proceedings of the 37th

208

https://doi.org/10.1109/LICS.2017.8005147
https://doi.org/10.1090/conm/431/08270
https://arxiv.org/abs/0706.2307
https://arxiv.org/abs/2402.13179
https://arxiv.org/abs/2112.14700
https://arxiv.org/abs/2208.08719
https://arxiv.org/abs/1206.4284
https://doi.org/10.1145/3450952
https://doi.org/10.1109/LICS.2017.8005124
https://doi.org/10.21136/HS.2022.01

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2022,
pp. 1–12. doi: 10.1145/3531130.3533363.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn.
“Compositional game theory”. In: Proceedings of the 33rd annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 2018, pp. 472–481.
doi: 10.1145/3209108.3209165.

[GPS95] Robert Gordon, Anthony John Power, and Ross Street.
Coherence for tricategories. Vol. 558. American Mathematical Soc., 1995.

[Gro83] Alexander Grothendieck. “Pursuing stacks”. 1983.
[GSB19] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal.

“Implementing a modal dependent type theory”.
In: Proceedings of the ACM on Programming Languages 3.ICFP (2019), pp. 1–29.
doi: 10.1145/3341711.

[Gur06] Michael Nicholas Gurski. “An algebraic theory of tricategories”.
PhD thesis. University of Chicago, Department of Mathematics, 2006.

[GvdB10] Richard Garner and Benno van den Berg. “Types are weak omega-groupoids”.
In: Proceedings of the London Mathematical Society 102.2 (2010), pp. 370–394.
doi: 10.1112/plms/pdq026.

[Had19] Amar Hadzihasanovic.
“Representable diagrammatic sets as a model of weak higher categories”. 2019.
arXiv: 1909.07639 [math.CT].

[Hei23] Lukas Heidemann.
“Framed Combinatorial Topology with Labels in∞-Categories”. 2023.
arXiv: 2305.06288 [math.AT].

[HRT24] Nick Hu, Alex Rice, and Calin Tataru. sd-visualiser. 2024.
[HRV22] Lukas Heidemann, David Reutter, and Jamie Vicary.

“Zigzag normalisation for associative n-categories”. In: Proceedings of the 37th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2022,
pp. 1–13. doi: 10.1145/3531130.3533352.

[HS98] Martin Hofmann and Thomas Streicher.
“The groupoid interpretation of type theory”.
In: Twenty-five years of constructive type theory. Vol. 36.
Oxford University Press, 1998, pp. 83–111.
doi: 10.1093/oso/9780198501275.003.0008.

[HV19] Chris Heunen and Jamie Vicary. Categories for quantum theory.
Oxford Graduate Texts in Mathematics.
London, England: Oxford University Press, Nov. 2019.
doi: 10.1093/oso/9780198739623.001.0001.

[Jim96] Trevor Jim. “What are principal typings and what are they good for?”
In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’96. St. Petersburg Beach, Florida, USA:
Association for Computing Machinery, 1996, pp. 42–53. isbn: 0897917693.
doi: 10.1145/237721.237728.

[JK07] André Joyal and Joachim Kock. “Weak units and homotopy 3-types”.
In: Categories in algebra, geometry and mathematical physics. Vol. 431.
Contemp. Math. Amer. Math. Soc., Providence, RI, 2007, pp. 257–276.
isbn: 978-0-8218-3970-6. doi: 10.1090/conm/431/08277.

209

https://doi.org/10.1145/3531130.3533363
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3341711
https://doi.org/10.1112/plms/pdq026
https://arxiv.org/abs/1909.07639
https://arxiv.org/abs/2305.06288
https://doi.org/10.1145/3531130.3533352
https://doi.org/10.1093/oso/9780198501275.003.0008
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1145/237721.237728
https://doi.org/10.1090/conm/431/08277

[JK13] André Joyal and Joachim Kock. “Coherence for weak units”.
In: Documenta Mathematica 18 (2013), pp. 71–110. issn: 1431-0635,1431-0643.

[Kov24] András Kovács. “Efficient Evaluation with Controlled Definition Unfolding”.
Workshop on the Implementation of Type Systems. 2024.

[Lei01] Tom Leinster. “A Survey of Definitions of n-Category”. 2001.
arXiv: math/0107188 [math.CT].

[Lei04] Tom Leinster. Higher operads, higher categories. Vol. 298.
Cambridge University Press, 2004.

[Lip16] Paolo Lipparini. “An infinite natural sum”.
In: Mathematical Logic Quarterly 62.3 (2016), pp. 249–257.
doi: 10.1002/malq.201500017.

[Lum10] Peter LeFanu Lumsdaine.
“Weak omega-categories from intensional type theory”.
In: Logical Methods in Computer Science Volume 6, Issue 3 (Sept. 2010).
issn: 1860-5974. doi: 10.2168/lmcs-6(3:24)2010.

[Mak05] Michael Makkai. “The word problem for computads”. https:
//www.math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf.
2005.

[Mal10] Georges Maltsiniotis.
“Grothendieck∞-groupoids, and still another definition of∞-categories”. 2010.
arXiv: 1009.2331 [math.CT].

[Mar75] Per Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”.
In: Logic Colloquium ’73. Ed. by H.E. Rose and J.C. Shepherdson. Vol. 80.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1975,
pp. 73–118. doi: https://doi.org/10.1016/S0049-237X(08)71945-1.

[Mel09] Paul-André Mellies. “Categorical semantics of linear logic”.
In: Panoramas et syntheses 27 (2009), pp. 15–215.

[NH42] Maxwell Newman and Alexander Herman.
“On theories with a combinatorial definition of equivalence”.
In: Annals of mathematics (1942), pp. 223–243.

[Ric24a] Alex Rice. Agda formalisation of Catt. Version thesis. Apr. 2024.
doi: 10.5281/zenodo.10964565.

[Ric24b] Alex Rice. Semistrict Catt implementation. Version thesis. Apr. 2024.
doi: 10.5281/zenodo.10966141.

[RV19] David Reutter and Jamie Vicary.
“High-level methods for homotopy construction in associative n-categories”.
In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). 2019, pp. 1–13. doi: 10.1109/LICS.2019.8785895.

[RV22] Emily Riehl and Dominic Verity. Elements of∞-Category Theory. Vol. 194.
Cambridge University Press, 2022. doi: 10.1017/9781108936880.

[Sel11] Peter Selinger. “A Survey of Graphical Languages for Monoidal Categories”. In:
New Structures for Physics. Springer Berlin Heidelberg, 2011, pp. 289–355.
isbn: 978-3-642-12821-9. doi: 10.1007/978-3-642-12821-9_4.

[Shu19] Michael Shulman. “All (∞, 1)-toposes have strict univalent universes”. 2019.
arXiv: 1904.07004 [math.AT].

[Sim98] Carlos Simpson. “Homotopy types of strict 3-groupoids”. 1998.
arXiv: math/9810059 [math.CT].

210

https://arxiv.org/abs/math/0107188
https://doi.org/10.1002/malq.201500017
https://doi.org/10.2168/lmcs-6(3:24)2010
https://www.math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf
https://www.math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf
https://arxiv.org/abs/1009.2331
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.5281/zenodo.10964565
https://doi.org/10.5281/zenodo.10966141
https://doi.org/10.1109/LICS.2019.8785895
https://doi.org/10.1017/9781108936880
https://doi.org/10.1007/978-3-642-12821-9_4
https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/math/9810059

[Str12] Ross Street. “Monoidal categories in, and linking, geometry and algebra”.
In: Bulletin of the Belgian Mathematical Society - Simon Stevin 19.5 (Dec. 2012).
issn: 1370-1444. doi: 10.36045/bbms/1354031551.

[Str76] Ross Street. “Limits indexed by category-valued 2-functors”.
In: Journal of Pure and Applied Algebra 8.2 (1976), pp. 149–181.
doi: 10.1016/0022-4049(76)90013-X.

[TV24] Calin Tataru and Jamie Vicary. “The theory and applications of anticolimits”.
2024. arXiv: 2401.17076 [math.CT].

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

[Web04] Mark Weber. “Generic Morphisms, Parametric Representations and Weakly
Cartesian Monads.”
In: Theory and Applications of Categories 13 (2004), pp. 191–234.

211

https://doi.org/10.36045/bbms/1354031551
https://doi.org/10.1016/0022-4049(76)90013-X
https://arxiv.org/abs/2401.17076
https://homotopytypetheory.org/book

	Introduction
	Background
	Higher categories
	Pasting diagrams
	Weak higher categories
	Computads

	The type theory Catt
	Syntax of Catt
	Ps-contexts
	Typing for Catt
	Basic constructions
	Suspension

	A formalised presentation of Catt with equality
	Extended substitution
	Cattr: Catt with equality
	Syntax
	Typing and equality

	The set of operations O
	Operation sets
	Operation properties

	The set of equality rules R
	Tame theories
	Further conditions
	Endo-coherence removal

	Constructions in Cattr
	Pruning
	Dyck words
	The pruning construction
	Properties of pruning

	Trees
	Wedge sums
	Tree contexts

	Structured syntax
	Typing and equality
	Standard coherences

	Insertion
	Universal property of insertion
	The insertion rule
	Further properties

	Semistrict variants of Catt
	Reduction
	Termination
	Confluence

	Cattsu
	Normalisation for Cattsu
	Disc trivialisation

	Cattsua
	Reduction for Cattsua
	Confluence of Cattsua

	Towards normalisation by evaluation
	Syntax
	Evaluation
	Typechecking
	Examples
	Further work

	Models
	Rehydration for pasting diagrams
	Towards generalised rehydration

	Future ideas

