
A continuation monad for quantum effects in

recursive programs

Alex Rice, University of Edinburgh

j.w.w. Robert Booth, Dominik Leichtle, Kim Worrall

Birmingham Theory Seminar

A continuation monad for quantum effects in recursive programs

Overview

• A model of hybrid quantum-classical computing

01

• Quantum instruments as a computational effect (monad structure).

x

𝜉

• Extending this monad to complete partial orders to model recursion.

fix(𝑓) = sup(⊥ ≤ 𝑓(⊥) ≤ 𝑓2(⊥) ≤ …)

Alex Rice, University of Edinburgh 1

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

Alex Rice, University of Edinburgh 2

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

Quantum computing is typically described using circuit diagrams.

𝐻

𝐻 𝐻

𝐻 𝐻

Alex Rice, University of Edinburgh 3

A continuation monad for quantum effects in recursive programs

Adding classical control

Circuit generation

def qft(qs):

 if not qs:

 return

 H(qs[0])

 for q in qs[1:]:

 ...

 qft(qs[1:])

↓

𝐻 𝑅2 𝑅3

𝐻 𝑅2

𝐻

Feedforward

def mbqc(theta, q):

 ret = ket('+')

 CZ(q, ret)

 if xy_measure(theta, q):

 X(ret)

 return ret

↓

q

XY(𝜃)

|+⟩ X ret

Postselection

def post_sel(q1, q2):

 a = H(ket(0))

 CX(a, q1)

 CX(a, q2)

 H(a)

 if measure(a):

 fail()

↓

|0⟩ 𝐻 𝐻 ⟨0|

Alex Rice, University of Edinburgh 4

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

𝐻

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

0

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

1

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

𝐻

[0,0,0]

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

…

…

01

Alex Rice, University of Edinburgh 5

A continuation monad for quantum effects in recursive programs

What does such a system do?

How can we model this system?

Alex Rice, University of Edinburgh 6

A continuation monad for quantum effects in recursive programs

Computational effects

“An effect is anything a function does beyond mapping inputs to outputs”

Common effects include:

• IO

• Failure

• Non-determinism

• Probabilistic choice

 def effectful_function(i: int):

 if random():

 return i

 else:

 return -i

Alex Rice, University of Edinburgh 7

A continuation monad for quantum effects in recursive programs

Probabilistic computation

Computations with randomness can be represented with distributions.

 def effectful_function(i: int):

 if random():

 return i

 else:

 return -i

This takes integer 𝑖 to {𝑖 with probability 0.5
−𝑖 with probability 0.5

A distribution on 𝑋 can be represented as a function 𝑋 → [0, 1].

Alex Rice, University of Edinburgh 8

A continuation monad for quantum effects in recursive programs

Quantum states and channels

Quantum computation can also modify the quantum data on the computer.

Concept Mathematical model

Quantum state Operator on a Hilbert space which is:

• Positive semi-definite

• Trace 1

Quantum channel

(𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅)
Map between operator spaces which is:

• Completely positive

• Trace non-increasing

Normalised Quantum channel Trace-preserving quantum channel

Alex Rice, University of Edinburgh 9

A continuation monad for quantum effects in recursive programs

Quantum instruments

The classical output of measurement is not captured by channels.

Quantum instruments extend channels with classical output.

We split the channel over classical outputs 𝑥 ∈ 𝑋.

Definition: (Finite) quantum instrument

A quantum instrument on a set 𝑋 is a map:

𝜉 : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

s.t. 𝜉(𝑥) ≠ 0 for finitely many 𝑥 and ∑𝑥 𝜉(𝑥) is normalised.

X

𝜉

Alex Rice, University of Edinburgh 10

A continuation monad for quantum effects in recursive programs

Example: Gate as an instrument

A quantum gate has no classical output.

We represent this as the classical outcome set 𝑋 = {∗}.

Given a gate 𝐺, we get instrument:

𝐺 : {∗} → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

𝐺(∗) = ⟦𝐺⟧

Where ⟦𝐺⟧ is the channel describing the application of 𝐺.

Gate:

𝐺

Instrument:

{∗}
𝐺

Alex Rice, University of Edinburgh 11

A continuation monad for quantum effects in recursive programs

Example: Measurement as an instrument

Measurement has 2 classical outcomes,

so let 𝑋 = 𝖻𝗈𝗈𝗅 = {𝖥𝖺𝗅𝗌𝖾, 𝖳𝗋𝗎𝖾}.

𝑀 : 𝖻𝗈𝗈𝗅 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅
𝑀(𝖥𝖺𝗅𝗌𝖾) = 𝑃0

𝑀(𝖳𝗋𝗎𝖾) = 𝑃1

Where 𝑃0 projects to the 0 state and 𝑃1 projects to the 1 state.

𝑃0 + 𝑃1 is normalised

Measurement:

Instrument:

𝖻𝗈𝗈𝗅
𝑀

Alex Rice, University of Edinburgh 12

A continuation monad for quantum effects in recursive programs

Computational effects via monads

Computational effects are commonly modelled with monads.

Monad 𝑀 takes an 𝑋 to 𝑀(𝑋) of computations returning 𝑋.

Alex Rice, University of Edinburgh 13

A continuation monad for quantum effects in recursive programs

Computational effects via monads

Computational effects are commonly modelled with monads.

Monad 𝑀 takes an 𝑋 to 𝑀(𝑋) of computations returning 𝑋.

Unit

𝜂𝑋 : 𝑋 → 𝑀(𝑋)

Includes non-effectful computation

def no_effect():

 return 1

Alex Rice, University of Edinburgh 13

A continuation monad for quantum effects in recursive programs

Computational effects via monads

Computational effects are commonly modelled with monads.

Monad 𝑀 takes an 𝑋 to 𝑀(𝑋) of computations returning 𝑋.

Unit

𝜂𝑋 : 𝑋 → 𝑀(𝑋)

Includes non-effectful computation

def no_effect():

 return 1

Extension

𝑓 : 𝑋 → 𝑀(𝑌) ⇒ 𝑓∗ : 𝑀(𝑋) → 𝑀(𝑌)

Composition of effectful functions.

def effectful(x):

 return x + random()

a = effectful(1)

b = effectful(a)

Alex Rice, University of Edinburgh 13

A continuation monad for quantum effects in recursive programs

Example: distribution monad

𝑃(𝑋) = {𝑝 : 𝑋 → [0, 1] | 𝑝(𝑥) ≠ 0 for finitely many 𝑥 and ∑
𝑥

𝑝(𝑥) = 1}

Unit

𝜂𝑋 : 𝑋 → 𝑃(𝑋)

𝜂𝑋(𝑥) = 𝑦 ↦ {1 if 𝑥 = 𝑦
0 otherwise

Extension

Given 𝑓 : 𝑋 → 𝑃(𝑌) obtain:

𝑓∗ : 𝑃 (𝑋) → 𝑃(𝑌)

𝑓∗(𝑝) = 𝑦 ↦ ∑
𝑥

𝑝(𝑥) ⋅ 𝑓(𝑥)(𝑦)

Alex Rice, University of Edinburgh 14

A continuation monad for quantum effects in recursive programs

Example: distribution monad

𝑃(𝑋) = {𝑝 : 𝑋 → [0, 1] | 𝑝(𝑥) ≠ 0 for finitely many 𝑥 and ∑
𝑥

𝑝(𝑥) = 1}

Unit

𝜂𝑋 : 𝑋 → 𝑃(𝑋)

𝜂𝑋(𝑥) = 𝑦 ↦ {1 if 𝑥 = 𝑦
0 otherwise

Extension

Given 𝑓 : 𝑋 → 𝑃(𝑌) obtain:

𝑓∗ : 𝑃 (𝑋) → 𝑃(𝑌)

𝑓∗(𝑝) = 𝑦 ↦ ∑
𝑥

𝑝(𝑥) ⋅ 𝑓(𝑥)(𝑦)

Primitives
𝗋𝖺𝗇𝖽𝗈𝗆 : 𝑃(𝖻𝗈𝗈𝗅) 𝗋𝖺𝗇𝖽𝗈𝗆 = 𝑏 ↦ 0.5

Alex Rice, University of Edinburgh 14

A continuation monad for quantum effects in recursive programs

The quantum instrument monad

𝑄(𝑋) = {𝜉 : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅 | 𝜉(𝑥) ≠ 0 for finitely many 𝑥

and ∑
𝑥

𝜉(𝑥) is Normalised}

Unit

𝜂𝑋 : 𝑋 → 𝑄(𝑋)

𝜂𝑋(𝑥) = 𝑦 ↦ {𝟙 if 𝑥 = 𝑦
0 otherwise

Extension

Given 𝑓 : 𝑋 → 𝑄(𝑌) obtain:

𝑓∗ : 𝑄(𝑋) → 𝑄(𝑌)

𝑓∗(𝜉) = 𝑦 ↦ ∑
𝑥

𝜉(𝑥) ∘ 𝑓(𝑥)(𝑦)

Primitives 𝑈 : 𝑄({∗}) 𝑀 : 𝑄(𝖻𝗈𝗈𝗅)

Alex Rice, University of Edinburgh 15

A continuation monad for quantum effects in recursive programs

Theorem

𝑄 is a monad on 𝐒𝐞𝐭.

Further, 𝑃 is a submonad of 𝑄.

Given a distribution 𝑝 : 𝑋 → [0, 1], we get a quantum instrument:

𝑞 : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅, 𝑞(𝑥) = 𝑝(𝑥) ⋅ 𝟙

Alex Rice, University of Edinburgh 16

A continuation monad for quantum effects in recursive programs

Example: Reset

One way to reset a qubit to |0⟩ is the following program:

def reset(q):

 b = measure(q)

 if b:

 X(q)

Lines 3-4 are given by:

𝑓 : 𝖻𝗈𝗈𝗅 → 𝑄({∗}) 𝑓(𝖥𝖺𝗅𝗌𝖾) = 𝜂(∗) 𝑓(𝖳𝗋𝗎𝖾) = 𝑋

with the whole program being 𝑓∗(𝑀).

𝑓∗(𝑀)(∗) = 𝑃0 ∘ 𝟙 + 𝑃1 ∘ ⟦𝑋⟧
= 𝜌 ↦ tr(𝜌) ⋅ 0-state
= ⟦Reset⟧

Alex Rice, University of Edinburgh 17

A continuation monad for quantum effects in recursive programs

Modelling recursion

Many quantum programs contain unbounded recursion/loops.

Recursive definitions are transformed to fixpoints.

DCPOs (Directed complete partial orders), always

have least fixpoints.

Is there a 𝐃𝐂𝐏𝐎-monad 𝒬︀ of quantum instruments?

fix(𝑓) = sup

(

 ≤

≤
≤

≤
≤

≤

⋮

𝑓𝑛(⊥)

⋮

𝑓1(⊥)

𝑓2(⊥)

𝑓3(⊥)

⊥)

Theorem (Cho 2014): 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅 forms a DCPO

Alex Rice, University of Edinburgh 18

A continuation monad for quantum effects in recursive programs

Consequence 1: normalisation is too strong

For each DCPO 𝑋, 𝒬︀(𝑋) should have a bottom element ⊥.

If 𝑋 has a bottom element ⊥𝑋, then we could let:

⊥ = 𝜂(⊥𝑋)

We don’t care about the result quantum state from divergence. Instead, we want:

⊥ : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅
⊥(𝑥) = 0

Forcing the normalisation condition to be removed.

Alex Rice, University of Edinburgh 19

A continuation monad for quantum effects in recursive programs

Consequence 2: finite does not suffice

Consider the following program:

def looping(q):

 n = 0

 while measure(q):

 H(q)

 n += 1

 return n

This program has infinitely many possible return values.

Therefore finite quantum instruments are not sufficient.

Alex Rice, University of Edinburgh 20

A continuation monad for quantum effects in recursive programs

Consequence 3: pointwise does not (seem to) suffice

Let 𝑥0 ≤ 𝑥1 ≤ … be a chain in 𝑋, with sup(𝑥𝑖) = 𝑥.

For the unit of the monad 𝜂𝑋 to be continuous, we must have:

𝜂𝑋(𝑥0) ≤ 𝜂𝑋(𝑥1) ≤ …

and

sup(𝜂𝑋(𝑥𝑖)) = 𝜂𝑋(𝑥)

Defining an ordering pointwise does not seem to suffice for this to be true.

Alex Rice, University of Edinburgh 21

A continuation monad for quantum effects in recursive programs

Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t. 𝑣(𝑋) ≤ 1 s.t. 𝑣(𝑋) is a channel

and

𝑣(𝑈 ∪ 𝑉) + 𝑣(𝑈 ∩ 𝑉) = 𝑣(𝑈) + 𝑣(𝑉)
𝑣(∅) = 0

𝑈 ⊆ 𝑉 ⇒ 𝑣(𝑈) ≤ 𝑣(𝑉)
These rules make 𝑣 a valuation.

Alex Rice, University of Edinburgh 22

A continuation monad for quantum effects in recursive programs

Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t. 𝑣(𝑋) ≤ 1 s.t. 𝑣(𝑋) is a channel

Let

𝑣 ≤ 𝑣′ ≔ ∀𝑈. 𝑣(𝑈) ≤ 𝑣′(𝑈)

𝒫︀(𝑋) and 𝒬︀(𝑋) are DCPOs

Alex Rice, University of Edinburgh 22

A continuation monad for quantum effects in recursive programs

Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t. 𝑣(𝑋) ≤ 1 s.t. 𝑣(𝑋) is a channel

𝜂 : 𝑋 ⇒ 𝒫︀(𝑋)

𝜂𝑋(𝑥)(𝑈) = {1 if 𝑥∈𝑈
0 otherwise

𝜂 : 𝑋 ⇒ 𝒬︀(𝑋)

𝜂𝑋(𝑥)(𝑈) = {𝟙 if 𝑥∈𝑈
0 otherwise

𝑥 ≤ 𝑦 ⇒ 𝜂𝑋(𝑥) ≤ 𝜂𝑋(𝑦) (⇔ ∀𝑈. 𝜂𝑋(𝑥)(𝑈) ≤ 𝜂𝑋(𝑦)(𝑈))
sup(𝜂𝑋(𝑥𝑖)) = 𝜂𝑋(sup(𝑥𝑖))

Alex Rice, University of Edinburgh 22

A continuation monad for quantum effects in recursive programs

Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t. 𝑣(𝑋) ≤ 1 s.t. 𝑣(𝑋) is a channel

𝑓 : 𝑋 → 𝒫︀(𝑌)
𝑓∗ : 𝒫︀(𝑋) → 𝒫︀(𝑌)

𝑓∗(𝑣)(𝑈) = ∫
𝑥∈𝑋

𝑓(𝑥)(𝑈) d𝑣

Alex Rice, University of Edinburgh 22

A continuation monad for quantum effects in recursive programs

Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t. 𝑣(𝑋) ≤ 1 s.t. 𝑣(𝑋) is a channel

𝑓 : 𝑋 → 𝒫︀(𝑌)
𝑓∗ : 𝒫︀(𝑋) → 𝒫︀(𝑌)

𝑓∗(𝑣)(𝑈) = ∫
𝑥∈𝑋

𝑓(𝑥)(𝑈) d𝑣

𝑓 : 𝑋 → 𝒬︀(𝑌)
𝑓∗ : 𝒬︀(𝑋) → 𝒬︀(𝑌)

𝑓∗(𝑣)(𝑈) = ?
Alex Rice, University of Edinburgh 22

A continuation monad for quantum effects in recursive programs

Integration attempt 1: copy classical approach

• The valuation gives definition on indicators:

∫ 𝜒(𝑈) d𝑣 = 𝑣(𝑈)

• Extend by linearity to sums of indicators:

∫ ∑ 𝜆𝑖𝜒(𝑈𝑖) d𝑣 = ∑ 𝜆𝑖𝑣(𝑈𝑖)

• Extend by monotonicity to all functions:

∫ 𝑓 d𝑣 = sup{∫ 𝑔 d𝑣 | 𝑔 ≤ 𝑓, 𝑔 simple}

Alex Rice, University of Edinburgh 23

A continuation monad for quantum effects in recursive programs

Integration attempt 1: copy classical approach

Channel-valued functions

don’t seem to be monotone

limits of sums of indicators.

Critically, 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅 is not a

lattice.

• The valuation gives definition on indicators:

∫ 𝜒(𝑈) d𝑣 = 𝑣(𝑈)

• Extend by linearity to sums of indicators:

∫ ∑ 𝜆𝑖𝜒(𝑈𝑖) d𝑣 = ∑ 𝜆𝑖𝑣(𝑈𝑖)

• Extend by monotonicity to all functions:

∫ 𝑓 d𝑣 = sup{∫ 𝑔 d𝑣 | 𝑔 ≤ 𝑓, 𝑔 simple}

Alex Rice, University of Edinburgh 23

A continuation monad for quantum effects in recursive programs

Integration attempt 2: approximate valuation

Instead of approximating the integrand we could approximate the valuation.

• Define:

∫ 𝑓 d𝜂(𝑥) = 𝑓(𝑥)

• Extend by linearity:

∫ 𝑓 d(∑ 𝜆𝑖𝜂(𝑥𝑖)) = ∑ 𝜆𝑖𝑓(𝑥𝑖)

• Extend by monotonicity.

Alex Rice, University of Edinburgh 24

A continuation monad for quantum effects in recursive programs

Integration attempt 2: approximate valuation

Instead of approximating the integrand we could approximate the valuation.

The integral on (finite) valuations

needs to be continuous to extend by

monotonicity.

Proofs of this in the probabilistic case

use max-flow min-cut theorems

which don’t extend from ℝ to

𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅.

• Define:

∫ 𝑓 d𝜂(𝑥) = 𝑓(𝑥)

• Extend by linearity:

∫ 𝑓 d(∑ 𝜆𝑖𝜂(𝑥𝑖)) = ∑ 𝜆𝑖𝑓(𝑥𝑖)

• Extend by monotonicity.

Alex Rice, University of Edinburgh 24

A continuation monad for quantum effects in recursive programs

Integration attempt 3: densities

If the valuation 𝑣 can be written as:

𝑣(𝑈) = ∫ 𝑓𝑣 dΔ𝑣

for probability valuation Δ𝑣 and function 𝑓𝑣, then we can define:

∫ 𝑓 d𝑣 = ∫
𝑥

𝑓𝑣(𝑥) ∘ 𝑓(𝑥) dΔ𝑣

This technique seems to only work for measures.

It is unclear how this behaves with respect to the order on valuations.

Alex Rice, University of Edinburgh 25

A continuation monad for quantum effects in recursive programs

Axiomatising integration

A valuation 𝑣 tells us the value of:

∫ 𝜒(𝑈) d𝑣

for each 𝑈 , with integration extending this construction to all 𝑓 .

What if we instead require that 𝑣 comes pre-equipped with an integral definition:

∫ 𝑓 d𝑣

Which is convex and preserves monotone limits?

Alex Rice, University of Edinburgh 26

A continuation monad for quantum effects in recursive programs

𝒬︀(𝑋) = (𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

Alex Rice, University of Edinburgh 27

A continuation monad for quantum effects in recursive programs

𝒬︀(𝑋) = (𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅
CPS(𝑋) = (𝑋 → Ans) → Ans

Alex Rice, University of Edinburgh 27

A continuation monad for quantum effects in recursive programs

A continuation monad

Quantum orchestra monad

For a DCPO 𝑋, let:

𝒬︀(𝑋) =
(
𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅⏟

continuous)
 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

⏟
continuous + convex

With unit and extension given identically to the CPS monad.

Alex Rice, University of Edinburgh 28

A continuation monad for quantum effects in recursive programs

Summary

• We described a model of hybrid quantum-classical computing through effects.

01

• We show that quantum instruments form a 𝐒𝐞𝐭-monad.

• We extend this monad to a 𝐃𝐂𝐏𝐎-monad through continuations.

𝒬︀(𝑋) =
(
𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅⏟

continuous)
 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

⏟
continuous + convex

Alex Rice, University of Edinburgh 29

A continuation monad for quantum effects in recursive programs

Alex Rice, University of Edinburgh 30

A continuation monad for quantum effects in recursive programs

Pure quantum computation

Measurement free quantum computations are often referred to as pure.

Qubits are represented by the Hilbert space ℂ2 with basis {|0⟩, |1⟩}.

An n-qubit circuit is represented by a unitary map:

𝑈 : ℂ2𝑛 → ℂ2𝑛

Example: Hadamard gate 𝐻

𝐻|0⟩ = |+⟩ = 1√
2
(|0⟩ + |1⟩) 𝐻|1⟩ = |−⟩ = 1√

2
(|0⟩ − |1⟩)

Alex Rice, University of Edinburgh 31

A continuation monad for quantum effects in recursive programs

Measurement

Measurement destructively converts quantum states to classical data.

𝑀(𝛼|0⟩ + 𝛽|1⟩) = {|0⟩ with probability |𝛼|2
|1⟩ with probability |𝛽|2

A pure state is converted to a probabilistic ensemble of pure states.

Are pure states the right tool to understand measurement?

No, we instead move to mixed states.

Alex Rice, University of Edinburgh 32

A continuation monad for quantum effects in recursive programs

Mixed states

Mixed states are represented through density matrices.

A mixed state in 𝐻 is a trace 1 positive map 𝜌 : 𝐻 → 𝐻

Probabilistic ensembles Density matrices

Pure states are mixed states 𝑣 ↦ |𝛼⟩⟨𝛼|𝑣⟩ (written |𝛼⟩⟨𝛼|)
Probabilities sum to 1 tr(𝜌) = 1

Probabilities are positive 𝜌 is a positive map

Allows convex combinations 𝛼𝜌 + 𝛽𝜌′ is a density matrix

Alex Rice, University of Edinburgh 33

A continuation monad for quantum effects in recursive programs

Quantum channels

Quantum computation on mixed states is given by quantum channels.

A quantum channel is a completely positive trace-preserving map on 𝐵(𝐻).

Unitaries

If 𝑈 : 𝐻 → 𝐻 is unitary:

Then 𝜌 ↦ 𝑈𝜌𝑈† is a channel.

|𝛼⟩⟨𝛼| ↦ 𝑈|𝛼⟩⟨𝛼|𝑈† = |𝑈𝛼⟩⟨𝑈𝛼|

Measurement

What about the classical output?

Alex Rice, University of Edinburgh 34

A continuation monad for quantum effects in recursive programs

Quantum channels

Quantum computation on mixed states is given by quantum channels.

A quantum channel is a completely positive trace-preserving map on 𝐵(𝐻).

Unitaries

If 𝑈 : 𝐻 → 𝐻 is unitary:

Then 𝜌 ↦ 𝑈𝜌𝑈† is a channel.

|𝛼⟩⟨𝛼| ↦ 𝑈|𝛼⟩⟨𝛼|𝑈† = |𝑈𝛼⟩⟨𝑈𝛼|

Measurement

𝛼|0⟩ + 𝛽|1⟩ ↦ |𝛼|2 |0⟩⟨0|

+ |𝛽|2 |1⟩⟨1|

What about the classical output?

Alex Rice, University of Edinburgh 34

A continuation monad for quantum effects in recursive programs

Quantum channels

Quantum computation on mixed states is given by quantum channels.

A quantum channel is a completely positive trace-preserving map on 𝐵(𝐻).

Unitaries

If 𝑈 : 𝐻 → 𝐻 is unitary:

Then 𝜌 ↦ 𝑈𝜌𝑈† is a channel.

|𝛼⟩⟨𝛼| ↦ 𝑈|𝛼⟩⟨𝛼|𝑈† = |𝑈𝛼⟩⟨𝑈𝛼|

Measurement

𝜌 ↦ ⟨0|𝜌|0⟩|0⟩⟨0|
+⟨1|𝜌|1⟩|1⟩⟨1|

What about the classical output?

Alex Rice, University of Edinburgh 34

	Overview
	What is hybrid quantum-classical computing?
	What is hybrid quantum-classical computing?
	Adding classical control
	Circuit generation
	Feedforward
	Postselection

	What is hybrid quantum-classical computing?
	Computational effects
	Probabilistic computation
	Quantum states and channels
	Quantum instruments
	Definition: (Finite) quantum instrument

	Example: Gate as an instrument
	Example: Measurement as an instrument
	Computational effects via monads
	Example: distribution monad
	Unit
	Extension

	The quantum instrument monad
	Unit
	Extension
	Primitives
	Theorem

	Example: Reset
	Modelling recursion
	Consequence 1: normalisation is too strong
	Consequence 2: finite does not suffice
	Consequence 3: pointwise does not (seem to) suffice
	Comparison with probabilistic power-domain
	Probablistic
	Quantum

	Integration attempt 1: copy classical approach
	Integration attempt 2: approximate valuation
	Integration attempt 3: densities
	Axiomatising integration
	
	A continuation monad
	Quantum orchestra monad

	Summary
	Pure quantum computation
	Example: Hadamard gate H

	Measurement
	Mixed states
	Quantum channels
	Unitaries
	Measurement

