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A continuation monad for quantum effects in recursive programs

Overview

• A model of hybrid quantum-classical computing

01

• Quantum instruments as a computational effect (monad structure).

x

𝜉

• Extending this monad to complete partial orders to model recursion.

fix(𝑓) = sup(⊥ ≤ 𝑓(⊥) ≤ 𝑓2(⊥) ≤ …)
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What is hybrid quantum-classical computing?
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A continuation monad for quantum effects in recursive programs

What is hybrid quantum-classical computing?

Quantum computing is typically described using circuit diagrams.

𝐻

𝐻 𝐻

𝐻 𝐻
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Adding classical control

Circuit generation

def qft(qs):

    if not qs:

        return

    H(qs[0])

    for q in qs[1:]:

        ...

    qft(qs[1:])

↓

𝐻 𝑅2 𝑅3

𝐻 𝑅2

𝐻

Feedforward

def mbqc(theta, q):

    ret = ket('+')

    CZ(q, ret)

    if xy_measure(theta, q):

        X(ret)

    return ret

↓

q

XY(𝜃)

|+⟩ X ret

Postselection

def post_sel(q1, q2):

    a = H(ket(0))

    CX(a, q1)

    CX(a, q2)

    H(a)

    if measure(a):

        fail()

↓

|0⟩ 𝐻 𝐻 ⟨0|
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What is hybrid quantum-classical computing?

…

…
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What does such a system do?

How can we model this system?

Alex Rice, University of Edinburgh 6
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Computational effects

“An effect is anything a function does beyond mapping inputs to outputs”

Common effects include:

• IO

• Failure

• Non-determinism

• Probabilistic choice

    def effectful_function(i: int):

        if random():

            return i

        else:

            return -i

Alex Rice, University of Edinburgh 7
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Probabilistic computation

Computations with randomness can be represented with distributions.

      def effectful_function(i: int):

          if random():

              return i

          else:

              return -i

This takes integer 𝑖 to {𝑖 with probability 0.5
−𝑖 with probability 0.5

A distribution on 𝑋 can be represented as a function 𝑋 → [0, 1].

Alex Rice, University of Edinburgh 8
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Quantum states and channels

Quantum computation can also modify the quantum data on the computer.

Concept Mathematical model

Quantum state Operator on a Hilbert space which is:

• Positive semi-definite

• Trace 1

Quantum channel

(𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅)
Map between operator spaces which is:

• Completely positive

• Trace non-increasing

Normalised Quantum channel Trace-preserving quantum channel

Alex Rice, University of Edinburgh 9
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Quantum instruments

The classical output of measurement is not captured by channels.

Quantum instruments extend channels with classical output.

We split the channel over classical outputs 𝑥 ∈ 𝑋.

Definition: (Finite) quantum instrument

A quantum instrument on a set 𝑋 is a map:

𝜉 : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

s.t. 𝜉(𝑥) ≠ 0 for finitely many 𝑥 and ∑𝑥 𝜉(𝑥) is normalised.

X

𝜉
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Example: Gate as an instrument

A quantum gate has no classical output.

We represent this as the classical outcome set 𝑋 = {∗}.

Given a gate 𝐺, we get instrument:

𝐺 : {∗} → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

𝐺(∗) = ⟦𝐺⟧

Where ⟦𝐺⟧ is the channel describing the application of 𝐺.

Gate:

𝐺

Instrument: 

{∗}
𝐺
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Example: Measurement as an instrument

Measurement has 2 classical outcomes,

so let 𝑋 = 𝖻𝗈𝗈𝗅 = {𝖥𝖺𝗅𝗌𝖾, 𝖳𝗋𝗎𝖾}.

𝑀 : 𝖻𝗈𝗈𝗅 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅
𝑀(𝖥𝖺𝗅𝗌𝖾) = 𝑃0

𝑀(𝖳𝗋𝗎𝖾) = 𝑃1

Where 𝑃0 projects to the 0 state and 𝑃1 projects to the 1 state.

𝑃0 + 𝑃1 is normalised

Measurement:

Instrument:

𝖻𝗈𝗈𝗅
𝑀

Alex Rice, University of Edinburgh 12
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Computational effects via monads

Computational effects are commonly modelled with monads.

Monad 𝑀  takes an 𝑋 to 𝑀(𝑋) of computations returning 𝑋.
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Computational effects via monads

Computational effects are commonly modelled with monads.

Monad 𝑀  takes an 𝑋 to 𝑀(𝑋) of computations returning 𝑋.

Unit

𝜂𝑋 : 𝑋 → 𝑀(𝑋)

Includes non-effectful computation

def no_effect():

    return 1
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Computational effects via monads

Computational effects are commonly modelled with monads.

Monad 𝑀  takes an 𝑋 to 𝑀(𝑋) of computations returning 𝑋.

Unit

𝜂𝑋 : 𝑋 → 𝑀(𝑋)

Includes non-effectful computation

def no_effect():

    return 1

Extension

𝑓 : 𝑋 → 𝑀(𝑌 ) ⇒ 𝑓∗ : 𝑀(𝑋) → 𝑀(𝑌 )

Composition of effectful functions.

def effectful(x):

    return x + random()

a = effectful(1)

b = effectful(a)

Alex Rice, University of Edinburgh 13
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Example: distribution monad

𝑃(𝑋) = {𝑝 : 𝑋 → [0, 1] | 𝑝(𝑥) ≠ 0 for finitely many 𝑥 and ∑
𝑥

𝑝(𝑥) = 1}

Unit

𝜂𝑋 : 𝑋 → 𝑃(𝑋)

𝜂𝑋(𝑥) = 𝑦 ↦ {1 if 𝑥 = 𝑦
0 otherwise

Extension

Given 𝑓 : 𝑋 → 𝑃(𝑌 ) obtain:

𝑓∗ : 𝑃 (𝑋) → 𝑃(𝑌 )

𝑓∗(𝑝) = 𝑦 ↦ ∑
𝑥

𝑝(𝑥) ⋅ 𝑓(𝑥)(𝑦)

Alex Rice, University of Edinburgh 14
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Example: distribution monad

𝑃(𝑋) = {𝑝 : 𝑋 → [0, 1] | 𝑝(𝑥) ≠ 0 for finitely many 𝑥 and ∑
𝑥

𝑝(𝑥) = 1}

Unit

𝜂𝑋 : 𝑋 → 𝑃(𝑋)

𝜂𝑋(𝑥) = 𝑦 ↦ {1 if 𝑥 = 𝑦
0 otherwise

Extension

Given 𝑓 : 𝑋 → 𝑃(𝑌 ) obtain:

𝑓∗ : 𝑃 (𝑋) → 𝑃(𝑌 )

𝑓∗(𝑝) = 𝑦 ↦ ∑
𝑥

𝑝(𝑥) ⋅ 𝑓(𝑥)(𝑦)

Primitives
𝗋𝖺𝗇𝖽𝗈𝗆 : 𝑃(𝖻𝗈𝗈𝗅) 𝗋𝖺𝗇𝖽𝗈𝗆 = 𝑏 ↦ 0.5

Alex Rice, University of Edinburgh 14
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The quantum instrument monad

𝑄(𝑋) = {𝜉 : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅 | 𝜉(𝑥) ≠ 0 for finitely many 𝑥

and ∑
𝑥

𝜉(𝑥) is Normalised}

Unit

𝜂𝑋 : 𝑋 → 𝑄(𝑋)

𝜂𝑋(𝑥) = 𝑦 ↦ {𝟙 if 𝑥 = 𝑦
0 otherwise

Extension

Given 𝑓 : 𝑋 → 𝑄(𝑌 ) obtain:

𝑓∗ : 𝑄(𝑋) → 𝑄(𝑌 )

𝑓∗(𝜉) = 𝑦 ↦ ∑
𝑥

𝜉(𝑥) ∘ 𝑓(𝑥)(𝑦)

Primitives 𝑈 : 𝑄({∗}) 𝑀 : 𝑄(𝖻𝗈𝗈𝗅)

Alex Rice, University of Edinburgh 15
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Theorem

𝑄 is a monad on 𝐒𝐞𝐭.

Further, 𝑃  is a submonad of 𝑄.

Given a distribution 𝑝 : 𝑋 → [0, 1], we get a quantum instrument:

𝑞 : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅, 𝑞(𝑥) = 𝑝(𝑥) ⋅ 𝟙

Alex Rice, University of Edinburgh 16
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Example: Reset

One way to reset a qubit to |0⟩ is the following program:

def reset(q):

    b = measure(q)

    if b:

        X(q)

Lines 3-4 are given by:

𝑓 : 𝖻𝗈𝗈𝗅 → 𝑄({∗}) 𝑓(𝖥𝖺𝗅𝗌𝖾) = 𝜂(∗) 𝑓(𝖳𝗋𝗎𝖾) = 𝑋

with the whole program being 𝑓∗(𝑀).

𝑓∗(𝑀)(∗) = 𝑃0 ∘ 𝟙 + 𝑃1 ∘ ⟦𝑋⟧
= 𝜌 ↦ tr(𝜌) ⋅ 0-state
= ⟦Reset⟧

Alex Rice, University of Edinburgh 17
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Modelling recursion

Many quantum programs contain unbounded recursion/loops.

Recursive definitions are transformed to fixpoints.

DCPOs (Directed complete partial orders), always

have least fixpoints.

Is there a 𝐃𝐂𝐏𝐎-monad 𝒬︀ of quantum instruments?

fix(𝑓) = sup

(











 ≤

≤
≤

≤
≤

≤

⋮

𝑓𝑛(⊥)

⋮

𝑓1(⊥)

𝑓2(⊥)

𝑓3(⊥)

⊥ )













Theorem (Cho 2014): 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅 forms a DCPO

Alex Rice, University of Edinburgh 18
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Consequence 1: normalisation is too strong

For each DCPO 𝑋, 𝒬︀(𝑋) should have a bottom element ⊥.

If 𝑋 has a bottom element ⊥𝑋, then we could let:

⊥ = 𝜂(⊥𝑋)

We don’t care about the result quantum state from divergence. Instead, we want:

⊥ : 𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅
⊥(𝑥) = 0

Forcing the normalisation condition to be removed.

Alex Rice, University of Edinburgh 19
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Consequence 2: finite does not suffice

Consider the following program:

def looping(q):

    n = 0

    while measure(q):

        H(q)

        n += 1

    return n

This program has infinitely many possible return values.

Therefore finite quantum instruments are not sufficient.

Alex Rice, University of Edinburgh 20
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Consequence 3: pointwise does not (seem to) suffice

Let 𝑥0 ≤ 𝑥1 ≤ … be a chain in 𝑋, with sup(𝑥𝑖) = 𝑥.

For the unit of the monad 𝜂𝑋  to be continuous, we must have:

𝜂𝑋(𝑥0) ≤ 𝜂𝑋(𝑥1) ≤ …

and

sup(𝜂𝑋(𝑥𝑖)) = 𝜂𝑋(𝑥)

Defining an ordering pointwise does not seem to suffice for this to be true.

Alex Rice, University of Edinburgh 21
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t.  𝑣(𝑋) ≤ 1 s.t.  𝑣(𝑋) is a channel

and

𝑣(𝑈 ∪ 𝑉 ) + 𝑣(𝑈 ∩ 𝑉 ) = 𝑣(𝑈) + 𝑣(𝑉 )
𝑣(∅) = 0

𝑈 ⊆ 𝑉 ⇒ 𝑣(𝑈) ≤ 𝑣(𝑉 )
These rules make 𝑣 a valuation.

Alex Rice, University of Edinburgh 22
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t.  𝑣(𝑋) ≤ 1 s.t.  𝑣(𝑋) is a channel

Let

𝑣 ≤ 𝑣′ ≔ ∀𝑈. 𝑣(𝑈) ≤ 𝑣′(𝑈)

𝒫︀(𝑋) and 𝒬︀(𝑋) are DCPOs

Alex Rice, University of Edinburgh 22
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t.  𝑣(𝑋) ≤ 1 s.t.  𝑣(𝑋) is a channel

𝜂 : 𝑋 ⇒ 𝒫︀(𝑋)

𝜂𝑋(𝑥)(𝑈) = {1 if 𝑥∈𝑈
0 otherwise

𝜂 : 𝑋 ⇒ 𝒬︀(𝑋)

𝜂𝑋(𝑥)(𝑈) = {𝟙 if 𝑥∈𝑈
0 otherwise

𝑥 ≤ 𝑦 ⇒ 𝜂𝑋(𝑥) ≤ 𝜂𝑋(𝑦) (⇔ ∀𝑈. 𝜂𝑋(𝑥)(𝑈) ≤ 𝜂𝑋(𝑦)(𝑈))
sup(𝜂𝑋(𝑥𝑖)) = 𝜂𝑋(sup(𝑥𝑖))

Alex Rice, University of Edinburgh 22
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t.  𝑣(𝑋) ≤ 1 s.t.  𝑣(𝑋) is a channel

𝑓 : 𝑋 → 𝒫︀(𝑌 )
𝑓∗ : 𝒫︀(𝑋) → 𝒫︀(𝑌 )

𝑓∗(𝑣)(𝑈) = ∫
𝑥∈𝑋

𝑓(𝑥)(𝑈) d𝑣
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum

𝒫︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → [0, 1]} 𝒬︀(𝑋) = {𝑣 : 𝒪︀(𝑋) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅}
s.t.  𝑣(𝑋) ≤ 1 s.t.  𝑣(𝑋) is a channel

𝑓 : 𝑋 → 𝒫︀(𝑌 )
𝑓∗ : 𝒫︀(𝑋) → 𝒫︀(𝑌 )

𝑓∗(𝑣)(𝑈) = ∫
𝑥∈𝑋

𝑓(𝑥)(𝑈) d𝑣

𝑓 : 𝑋 → 𝒬︀(𝑌 )
𝑓∗ : 𝒬︀(𝑋) → 𝒬︀(𝑌 )

𝑓∗(𝑣)(𝑈) = ?
Alex Rice, University of Edinburgh 22
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Integration attempt 1: copy classical approach

• The valuation gives definition on indicators:

∫ 𝜒(𝑈) d𝑣 = 𝑣(𝑈)

• Extend by linearity to sums of indicators:

∫ ∑ 𝜆𝑖𝜒(𝑈𝑖) d𝑣 = ∑ 𝜆𝑖𝑣(𝑈𝑖)

• Extend by monotonicity to all functions:

∫ 𝑓 d𝑣 = sup{∫ 𝑔 d𝑣 | 𝑔 ≤ 𝑓, 𝑔 simple}

Alex Rice, University of Edinburgh 23
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Integration attempt 1: copy classical approach

Channel-valued functions 

don’t seem to be monotone 

limits of sums of indicators.

Critically, 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅 is not a 

lattice.

• The valuation gives definition on indicators:

∫ 𝜒(𝑈) d𝑣 = 𝑣(𝑈)

• Extend by linearity to sums of indicators:

∫ ∑ 𝜆𝑖𝜒(𝑈𝑖) d𝑣 = ∑ 𝜆𝑖𝑣(𝑈𝑖)

• Extend by monotonicity to all functions:

∫ 𝑓 d𝑣 = sup{∫ 𝑔 d𝑣 | 𝑔 ≤ 𝑓, 𝑔 simple}
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Integration attempt 2: approximate valuation

Instead of approximating the integrand we could approximate the valuation.

• Define:

∫ 𝑓 d𝜂(𝑥) = 𝑓(𝑥)

• Extend by linearity:

∫ 𝑓 d(∑ 𝜆𝑖𝜂(𝑥𝑖)) = ∑ 𝜆𝑖𝑓(𝑥𝑖)

• Extend by monotonicity.

Alex Rice, University of Edinburgh 24
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Integration attempt 2: approximate valuation

Instead of approximating the integrand we could approximate the valuation.

The integral on (finite) valuations 

needs to be continuous to extend by 

monotonicity.

Proofs of this in the probabilistic case 

use max-flow min-cut theorems 

which don’t extend from ℝ to 

𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅.

• Define:

∫ 𝑓 d𝜂(𝑥) = 𝑓(𝑥)

• Extend by linearity:

∫ 𝑓 d(∑ 𝜆𝑖𝜂(𝑥𝑖)) = ∑ 𝜆𝑖𝑓(𝑥𝑖)

• Extend by monotonicity.
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Integration attempt 3: densities

If the valuation 𝑣 can be written as:

𝑣(𝑈) = ∫ 𝑓𝑣 dΔ𝑣

for probability valuation Δ𝑣 and function 𝑓𝑣, then we can define:

∫ 𝑓 d𝑣 = ∫
𝑥

𝑓𝑣(𝑥) ∘ 𝑓(𝑥) dΔ𝑣

This technique seems to only work for measures.

It is unclear how this behaves with respect to the order on valuations.

Alex Rice, University of Edinburgh 25
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Axiomatising integration

A valuation 𝑣 tells us the value of:

∫ 𝜒(𝑈) d𝑣

for each 𝑈 , with integration extending this construction to all 𝑓 .

What if we instead require that 𝑣 comes pre-equipped with an integral definition:

∫ 𝑓 d𝑣

Which is convex and preserves monotone limits?

Alex Rice, University of Edinburgh 26
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𝒬︀(𝑋) = (𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

Alex Rice, University of Edinburgh 27
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𝒬︀(𝑋) = (𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅) → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅
CPS(𝑋) = (𝑋 → Ans ) → Ans

Alex Rice, University of Edinburgh 27
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A continuation monad

Quantum orchestra monad

For a DCPO 𝑋, let:

𝒬︀(𝑋) =
(
𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅⏟

continuous )
 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

⏟
continuous + convex

With unit and extension given identically to the CPS monad.

Alex Rice, University of Edinburgh 28
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Summary

• We described a model of hybrid quantum-classical computing through effects.

01

• We show that quantum instruments form a 𝐒𝐞𝐭-monad.

• We extend this monad to a 𝐃𝐂𝐏𝐎-monad through continuations.

𝒬︀(𝑋) =
(
𝑋 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅⏟

continuous )
 → 𝖰𝖢𝗁𝖺𝗇𝗇𝖾𝗅

⏟
continuous + convex
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Pure quantum computation

Measurement free quantum computations are often referred to as pure.

Qubits are represented by the Hilbert space ℂ2 with basis {|0⟩, |1⟩}.

An n-qubit circuit is represented by a unitary map:

𝑈 : ℂ2𝑛 → ℂ2𝑛

Example: Hadamard gate 𝐻

𝐻|0⟩ = |+⟩ = 1√
2
(|0⟩ + |1⟩) 𝐻|1⟩ = |−⟩ = 1√

2
(|0⟩ − |1⟩)

Alex Rice, University of Edinburgh 31



A continuation monad for quantum effects in recursive programs

Measurement

Measurement destructively converts quantum states to classical data.

𝑀(𝛼|0⟩ + 𝛽|1⟩) = {|0⟩ with probability |𝛼|2
|1⟩ with probability |𝛽|2

A pure state is converted to a probabilistic ensemble of pure states.

Are pure states the right tool to understand measurement?

No, we instead move to mixed states.

Alex Rice, University of Edinburgh 32



A continuation monad for quantum effects in recursive programs

Mixed states

Mixed states are represented through density matrices.

A mixed state in 𝐻  is a trace 1 positive map 𝜌 : 𝐻 → 𝐻

Probabilistic ensembles Density matrices

Pure states are mixed states 𝑣 ↦ |𝛼⟩⟨𝛼|𝑣⟩ (written |𝛼⟩⟨𝛼|)
Probabilities sum to 1 tr(𝜌) = 1

Probabilities are positive 𝜌 is a positive map

Allows convex combinations 𝛼𝜌 + 𝛽𝜌′ is a density matrix

Alex Rice, University of Edinburgh 33
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Quantum channels

Quantum computation on mixed states is given by quantum channels.

A quantum channel is a completely positive trace-preserving map on 𝐵(𝐻).

Unitaries

If 𝑈 : 𝐻 → 𝐻  is unitary:

Then 𝜌 ↦ 𝑈𝜌𝑈† is a channel.

|𝛼⟩⟨𝛼| ↦ 𝑈|𝛼⟩⟨𝛼|𝑈† = |𝑈𝛼⟩⟨𝑈𝛼|

Measurement

What about the classical output?

Alex Rice, University of Edinburgh 34
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Quantum channels

Quantum computation on mixed states is given by quantum channels.

A quantum channel is a completely positive trace-preserving map on 𝐵(𝐻).

Unitaries

If 𝑈 : 𝐻 → 𝐻  is unitary:

Then 𝜌 ↦ 𝑈𝜌𝑈† is a channel.

|𝛼⟩⟨𝛼| ↦ 𝑈|𝛼⟩⟨𝛼|𝑈† = |𝑈𝛼⟩⟨𝑈𝛼|

Measurement

𝛼|0⟩ + 𝛽|1⟩ ↦ |𝛼|2 |0⟩⟨0|

+ |𝛽|2 |1⟩⟨1|

What about the classical output?

Alex Rice, University of Edinburgh 34
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Quantum channels

Quantum computation on mixed states is given by quantum channels.

A quantum channel is a completely positive trace-preserving map on 𝐵(𝐻).

Unitaries

If 𝑈 : 𝐻 → 𝐻  is unitary:

Then 𝜌 ↦ 𝑈𝜌𝑈† is a channel.

|𝛼⟩⟨𝛼| ↦ 𝑈|𝛼⟩⟨𝛼|𝑈† = |𝑈𝛼⟩⟨𝑈𝛼|

Measurement

𝜌 ↦ ⟨0|𝜌|0⟩|0⟩⟨0|
+⟨1|𝜌|1⟩|1⟩⟨1|

What about the classical output?

Alex Rice, University of Edinburgh 34
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