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Overview

« A model of hybrid quantum-classical computing
N

~_
« Quantum instruments as a computational effect (monad structure).

— X

« Extending this monad to complete partial orders to model recursion.

fix(f) = sup(L < f(L) < f2(L) < ...

Alex Rice, University of Edinburgh ‘
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What is hybrid quantum-classical computing?

Alex Rice, University of Edinburgh
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A continuation monad for quantum effects in recursive programs

What is hybrid quantum-elassieal computing?

Quantum computing is typically described using circuit diagrams.

Alex Rice, University of Edinburgh
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Adding classical control

Circuit generation Feedforward Postselection
def qft(gs): def mbqgc(theta, q): def post sel(ql, g2):
if not gs: ret = ket('+") a = H(ket(0))
return CZ(qg, ret) CX(a, ql)
H(qs[0]) if xy measure(theta, q): CX(a, g2)
for g in gqs[1l:]: X(ret) H(a)
- return ret 1T measure(a):
qft(qs[1:1) fail()

! ' !
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What is hybrid quantum-classical computing?
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What does such system do?
How can we model this system?
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Computational effects

[“An effect is anything a function does beyond mapping inputs to outputs”)

Common effects include: def effectful function(i: int):
e |0 if random():
« Failure L

else:

« Non-determinism
« Probabilistic choice

return -1

Alex Rice, University of Edinburgh
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Probabilistic computation

Computations with randomness can be represented with distributions.

def effectful function(i: int):
1f random():
return 1
else:
return -1

1 with probability 0.5

This takes integer i to {—7; S e by 0.3

A distribution on X can be represented as a function X — [0, 1].

Alex Rice, University of Edinburgh
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Quantum states and channels

Quantum computation can also modify the quantum data on the computer.

Concept Mathematical model
Quantum state Operator on a Hilbert space which is:
« Positive semi-definite
« Tracel
Quantum channel Map between operator spaces which is:
(QChannel) « Completely positive

 Trace non-increasing

Normalised Quantum channel Trace-preserving quantum channel

Alex Rice, University of Edinburgh ‘
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Quantum instruments

The classical output of measurement is not captured by channels.
Quantum instruments extend channels with classical output.

We split the channel over classical outputs z € X.

R X
Definition: (Finite) guantum instrument 3
A guantum instrument on a set X is a map:
£ : X — QChannel
k&t' §(z) # 0 forfinitely many z and | () is normalised. )

Alex Rice, University of Edinburgh
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Example: Gate as an instrument

A quantum gate has no classical output. Gate:
We represent this as the classical outcome set X = {x}. —
Given a gate GG, we get instrument:
_ Instrument:
G : {x} — QChannel
G(x) = [G] G

Where [G] is the channel describing the application of G.

Alex Rice, University of Edinburgh A
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Example: Measurement as an instrument

Measurement has 2 classical outcomes, Measurement:
so let X = bool = {False, True}.
— A=
M : bool — QChannel
M (False) = F, Instrument:
M(True) = P, -
M

Where R, projects to the 0 state and P, projects to the 1 state.

Ry + P, is normalised

Alex Rice, University of Edinburgh A
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Computational effects via monads

Computational effects are commonly modelled with monads.

Monad M takes an X to M (X) of computations returning X.

Alex Rice, University of Edinburgh
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Computational effects via monads

Computational effects are commonly modelled with monads.
Monad M takes an X to M (X) of computations returning X.
Unit

Ny : X = M(X)

Includes non-effectful computation

def no effect():
return 1

Alex Rice, University of Edinburgh
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Computational effects via monads

Computational effects are commonly modelled with monads.

Monad M takes an X to M (X) of computations returning X.

Unit Extension
Ny : X = M(X) f: X—>MY) = f:MX)— M)
Includes non-effectful computation Composition of effectful functions.
def no effect(): def effectful(x):
return 1 return x + random()

a = effectful (1)
b = effectful(a)

Alex Rice, University of Edinburgh A
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Example: distribution monad

P(X) = {p : X — [0,1] | p(x) # 0 for finitely many x and pr(:c) = 1}

Unit Extension
Ny : X = P(X) Given f : X — P(Y) obtain:
B lifx =y f*: P(X)— P(Y)
el = s {O otherwise

)=y p@) fl@)y)

Alex Rice, University of Edinburgh A
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Example: distribution monad

P(X) = {p : X — [0,1] | p(x) # 0 for finitely many x and pr(:c) = 1}

Unit Extension
Ny : X = P(X) Given f : X — P(Y) obtain:
B lifx =y f*: P(X)— P(Y)
el = s {O otherwise

)=y p@) fl@)y)

Primitives
random : P(bool) random = b — 0.5

Alex Rice, University of Edinburgh A
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The quantum instrument monad

Q(X) = {§ : X — QChannel | £(x) # 0 for finitely many x
andz £(x) is Normalised}

Unit Extension
Ny : X = Q(X) Given f : X — Q(Y) obtain:
R o O
@ =yr ) &) fl@)y)
Primitives U:Q({*}) M :Q(bool)

Alex Rice, University of Edinburgh
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Theorem

(2 is a monad on Set.

Further, P is a submonad of Q).
\_ /

Given a distribution p : X — [0, 1], we get a quantum instrument:

q : X — QChannel, q(z)=p(x)-1

Alex Rice, University of Edinburgh
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Example: Reset

One way to reset a qubit to |0) is the following program:

def reset(q): Lines 3-4 are given by:
b = measure(q) B'a
if b f :bool — Q({*}) f(False) =n(x) f(True)=X
x(q) with the whole program being f*(M).

fH(M)(*) = Ryol+ P o [X]
= p  tr(p) - O-state
= [Reset]

Alex Rice, University of Edinburgh
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Modelling recursion

Many quantum programs contain unbounded recursion/loops. VI
(L
Recursive definitions are transformed to fixpoints. / & )
DCPOs (Directed complete partial orders), always y
have least fixpoints. fix(f) = sup f3( )
[Is there a DCPO-monad 9 of quantum instruments?) f2( )
fl( )
[Theorem (Cho 2014): QChannel forms a DCPO) \ L y

Alex Rice, University of Edinburgh
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Consequence 1: normalisation is too strong

For each DCPO X, 9(X) should have a bottom element L.

If X has a bottom element | y, then we could let:

L =n(ly)
We don’t care about the result quantum state from divergence. Instead, we want:

1 : X — QChannel
1l(x)=0

Forcing the normalisation condition to be removed.

Alex Rice, University of Edinburgh A
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Consequence 2: finite does not suffice

Consider the following program:

def looping(q):
n =20
while measure(q):

H(q)
n += 1
return n

This program has infinitely many possible return values.

Therefore finite quantum instruments are not sufficient.

Alex Rice, University of Edinburgh
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Consequence 3: pointwise does not (seem to) suffice
Letzy, < z; < ...beachainin X, with sup(z;) = =.

For the unit of the monad ny to be continuous, we must have:

Nx(zy) < nx(zy) < ...

and

sup(nx(z;)) = nx(z)

Defining an ordering pointwise does not seem to suffice for this to be true.

Alex Rice, University of Edinburgh A
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum
P(X)={v:0(X)—|0,1]} 9(X) ={v:0(X) — QChannel}
st. v(X) <1 st. v(X)isachannel

and

v UUV)+o(UNV)=vU)+v(V)
v(0) =0
UCV=vU)<vV)
These rules make v a valuation.

Alex Rice, University of Edinburgh
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum
P(X)={v:0(X)—|0,1]} 9(X) ={v:0(X) — QChannel}
st. v(X) <1 st. v(X)isachannel

Let

v<v :=VU. v(U) <v'(U)

[T(X) and 9(X) are DCPOS)

Alex Rice, University of Edinburgh
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum
P(X)={v:0(X)—|0,1]} 9(X) ={v:0(X) — QChannel}
st. v(X) <1 st. v(X)isachannel
n:X = P(X) n:X = 9(X)

if zeU if €U
Ub’e (ZIJ)(U) — {(1) otheerwise U {(]; otheerwise

r<y=nx) <nx() (& VU. nx(z)(U) <nx(y)U))
Sup(nx(xi)) — nX(SuP(iUz'))

Alex Rice, University of Edinburgh A
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum
P(X)={v:0(X)—|0,1]} 9(X) ={v:0(X) — QChannel}
st. v(X) <1 st. v(X)isachannel

f: X —2P(Y)

fr:P(X)— PY)

F)U) = / F(@)U) dv

Alex Rice, University of Edinburgh
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Comparison with probabilistic power-domain

Quantum can often be seen as an extension of classical probability.

Probablistic Quantum
P(X)={v:0(X)—|0,1]} 9(X) ={v:0(X) — QChannel}
st. v(X) <1 st. v(X)isachannel
f: X —>PY) f: X —9()
f*: P(X)—> PY) f*: 9(X) = 9(Y)
FOO= [  f@) d Fow = P

Alex Rice, University of Edinburgh
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Integration attempt 1: copy classical approach

 The valuation gives definition on indicators:

[ x(w)av=)

 Extend by linearity to sums of indicators:

[ X rx@av= 3 xe(v)

 Extend by monotonicity to all functions:

/fdvzsup{/gdv lg<f,g Simple}

Alex Rice, University of Edinburgh
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Integration attempt 1: copy classical approach

 The valuation gives definition on indicators:

4 N
/X(U) dv = v(U) Channel-valued functions
don’t seem to be monotone
limits of sums of indicators.

Z A x(U,) dv = Z A 0(U,) Critically, QChannel is not a
o o lattice.

« Extend by monotonicity to all functions: \ /

/fdv = sup{/gdv lg<f,g Simple}
Alex Rice, University of Edinburgh A

 Extend by linearity to sums of indicators:
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Integration attempt 2: approximate valuation

Instead of approximating the integrand we could approximate the valuation.

« Define;

[ fanta) = (a)

 Extend by linearity:

/fd(z Am(fvi)) = ZAJ(%)

 Extend by monotonicity.

Alex Rice, University of Edinburgh
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Integration attempt 2: approximate valuation

Instead of approximating the integrand we could approximate the valuation.

o . h
Define: The integral on (finite) valuations

needs to be continuous to extend by
monotonicity.

[ fanta) = (a)

» Extend by linearity: Proofs of this in the probabilistic case
use max-flow min-cut theorems

/ f d(z Am(%)) = Z Aif(x;) which don’t extend from R to

 Extend by monotonicity. \QChanneI. J

Alex Rice, University of Edinburgh A
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Integration attempt 3: densities

If the valuation v can be written as:

o0) = [ f,8,

for probability valuation A and function f,, then we can define:

[ rav- / f.(z) o f(z)da,

This technigue seems to only work for measures.
It is unclear how this behaves with respect to the order on valuations.

Alex Rice, University of Edinburgh A
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Axiomatising integration

/ x(U) do

for each U, with integration extending this construction to all f.

A valuation v tells us the value of:

What if we instead require that v comes pre-equipped with an integral definition:

[ e

Which is convex and preserves monotone limits?

Alex Rice, University of Edinburgh A
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9(X) = (X — QChannel) — QChannel

Alex Rice, University of Edinburgh
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0(X)
CPS(X)

(X — QChannel) — QChannel
(X — Ans ) — Ans

Alex Rice, University of Edinburgh
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A continuation monad

4 N
Quantum orchestra monad

Fora DCPO X, let:

9(X) = | X — QChannel | — QChannel

continuous

N —4
—

continuous + convex

\With unit and extension given identically to the CPS monad. y

Alex Rice, University of Edinburgh
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Summary

« We described a model of hybrid quantum-classical computing through effects.

N

~_
« We show that quantum instruments form a Set-monad.
« We extend this monad to a DCPO-monad through continuations.

9(X) = | X — QChannel | — QChannel

continuous

N —
-

continuous + convex

Alex Rice, University of Edinburgh
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Pure quantum computation

Measurement free quantum computations are often referred to as pure.
Qubits are represented by the Hilbert space C? with basis {|0), [1)}.

An n-qubit circuit is represented by a unitary map:

U:C?* —C*
4 N\
Example: Hadamard gate 4
1
H|0) = |4) = ﬁum +]1)  H|L)=|-)= 7(|0> — (1))
N )

Alex Rice, University of Edinburgh
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Measurement

Measurement destructively converts quantum states to classical data.

_[]0) with probability |a/|?
M(a|0) + B]1)) = {|1> with probability |3|2

A pure state is converted to a probabilistic ensemble of pure states.

[Are pure states the right tool to understand measurement?)

No, we instead move to mixed states.

Alex Rice, University of Edinburgh A
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Mixed states

Mixed states are represented through density matrices.

[A mixed state in H is a trace 1 positivemap p : H — H)

Probabilistic ensembles Density matrices
Pure states are mixed states v = |a){alv) (written |a) ()
Probabilities sumto 1 tr(p) =1
Probabilities are positive p is a positive map
Allows convex combinations ap + Bp’ is a density matrix

Alex Rice, University of Edinburgh A
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Quantum channels

Quantum computation on mixed states is given by quantum channels.

[A quantum channel is a completely positive trace-preserving map on B(H).)

Unitaries Measurement

IfU : H — H is unitary: What about the classical output?
Then p = UpUT is a channel.

a){a] = Ula)(a|UT = [Ua)(Ua

Alex Rice, University of Edinburgh A
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Quantum channels

Quantum computation on mixed states is given by quantum channels.

[A quantum channel is a completely positive trace-preserving map on B(H).)

Unitaries Measurement

IfU : H — H is unitary: a|0) + B|1) = |a]? 10)(0|
Then p = UpUT is a channel. + 1812 Y

What about the classical output?

Alex Rice, University of Edinburgh A

a){a] = Ula)(a|UT = [Ua)(Ua
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Quantum channels

Quantum computation on mixed states is given by quantum channels.

[A quantum channel is a completely positive trace-preserving map on B(H).)

Unitaries Measurement

IfU : H — H isunitary: p = {(0]p|0)|0){0]
Then p = UpUT is a channel. 1 [p[1Y 1) (1]

What about the classical output?

Alex Rice, University of Edinburgh A

a){a] = Ula)(a|UT = [Ua)(Ua
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