New Minimal Linear Inferences in Boolean Logic
Independent of Switch and Medial

Anupam Das\textsuperscript{1} and Alex Rice\textsuperscript{2}

\textsuperscript{1}University of Birmingham
\textsuperscript{2}University of Cambridge

FSCD 2021
Outline

1 Background
  • Linear Inferences
  • Relation Webs

2 Algorithm and Implementation

3 Results
Linear Inferences in Classical Logic

We consider formulae to built with connectives $\land$ and $\lor$, constants $\bot$ and $\top$, and negation of variables.

**Definition**

A **linear formula** is a formula where each variable only appears at most once.
Linear Inferences in Classical Logic

We consider formulae to built with connectives $\wedge$ and $\vee$, constants $\bot$ and $\top$, and negation of variables.

**Definition**

A **linear formula** is a formula where each variable only appears at most once.

**Definition**

A **linear inference** is a valid implication $\varphi \rightarrow \psi$, where $\varphi$ and $\psi$ are linear formulae.
Linear Inferences in Classical Logic

We consider formulae to built with connectives $\land$ and $\lor$, constants $\perp$ and $\top$, and negation of variables.

**Definition**

A **linear formula** is a formula where each variable only appears at most once.

**Definition**

A **linear inference** is a valid implication $\varphi \rightarrow \psi$, where $\varphi$ and $\psi$ are linear formulae.

The set of linear inferences is **coNP**-complete. The linear inferences are just the multiplicative fragments of Blass’ game semantics for linear logic.
Switch and Medial

Switch

\[ x \land (y \lor z) \rightarrow (x \land y) \lor z \]

Switch underlies multiplicative linear logic.

Medial

\[ (w \land x) \lor (y \land z) \rightarrow (w \lor y) \land (x \lor z) \]

Switch and medial are the logical fragment of deep inference proof theory. Medial allows locality of contraction.
We would like to be able to build up more complicated inferences from simpler ones such as switch and medial. This can be done with rewriting.
Composing Inferences with Rewriting

We would like to be able to build up more complicated inferences from simpler ones such as switch and medial. This can be done with rewriting.

\[ w \land x \land (y \lor z) \leadsto_s w \land ((x \land y) \lor z) \]
\[ \leadsto_s (w \land z) \lor (x \land y) \]
\[ \leadsto_m (w \lor x) \land (y \lor z) \]
We would like to be able to build up more complicated inferences from simpler ones such as switch and medial. This can be done with rewriting.

\[
\begin{align*}
    w \land x \land (y \lor z) & \rightsquigarrow_s w \land ((x \land y) \lor z) \\
    & \rightsquigarrow_s (w \land z) \lor (x \land y) \\
    & \rightsquigarrow_m (w \lor x) \land (y \lor z)
\end{align*}
\]
Composing Inferences with Rewriting

We would like to be able to build up more complicated inferences from simpler ones such as switch and medial. This can be done with rewriting.

\[ w \land x \land (y \lor z) \xrightarrow{\text{s}} w \land ((x \land y) \lor z) \]
\[ \xrightarrow{\text{s}} (w \land z) \lor (x \land y) \]
\[ \xrightarrow{\text{m}} (w \lor x) \land (y \lor z) \]
We would like to be able to build up more complicated inferences from simpler ones such as switch and medial. This can be done with rewriting.

\[ w \land x \land (y \lor z) \leadsto_s w \land ((x \land y) \lor z) \]
\[ \leadsto_s (w \land z) \lor (x \land y) \]
\[ \leadsto_m (w \lor x) \land (y \lor z) \]
Definition

Let $\sim_{acu}$ be the smallest congruence containing associativity, commutativity, and unit laws.

Therefore we have

$$\varphi \lor \psi \sim_{acu} \psi \lor \varphi \quad \varphi \land (\psi \land \chi) \sim_{acu} (\varphi \land \psi) \land \chi$$

$$\varphi \land \psi \sim_{acu} \psi \land \varphi \quad \varphi \lor (\psi \lor \chi) \sim_{acu} (\varphi \lor \psi) \lor \chi$$

for associativity and commutativity and

$$\varphi \land T \sim_{u} \varphi \quad \varphi \lor \bot \sim_{u} \varphi \quad T \land \varphi \sim_{u} \varphi \quad \bot \lor \varphi \sim_{u} \varphi$$

$$\varphi \land \bot \sim_{u} \bot \quad \varphi \lor T \sim_{u} T \quad \bot \land \varphi \sim_{u} \bot \quad T \lor \varphi \sim_{u} T$$

for unitality.
Let $\rightarrow_{ms}$ be the term rewrite system generated by switch and medial.
Let $\rightarrow_{ms}$ be the term rewrite system generated by switch and medial.

**Definition**

Write $\varphi \sim_{ms} \psi$ if there are linear formulae $\varphi'$ and $\psi'$ with $\varphi \sim_{acu} \varphi' \rightarrow_{ms} \psi' \sim_{acu} \psi$. Further write $\sim^{*}_{ms}$ for the reflexive transitive closure of $\sim_{ms}$.
Existing Results

What inferences are derivable from switch and medial?

All 6-variable linear inferences are derivable from switch and medial (ˇSipraga, 2012).

The set of linear inferences has no polynomial-time basis (unless $\text{coNP} = \text{NP}$) (Das and Straßburger, 2016).

A 36-variable linear inference that cannot be derived from switch and medial was found (Straßburger, 2012).

This was improved to a 10 variable inference which cannot be derived from switch and medial (Das, 2013).

$$((z \lor (w \land w')) \land (y \lor y') \land (u \lor u') \land ((x \land x') \lor z') \rightarrow (z \land (x \lor y)) \lor (u \land x') \lor (w' \land u') \lor ((w \lor y') \land z'))$$
Existing Results

What inferences are derivable from switch and medial?

- All 6-variable linear inferences are derivable from switch and medial (Šipraga, 2012).
Existing Results

What inferences are derivable from switch and medial?

- All 6-variable linear inferences are derivable from switch and medial (Šipraga, 2012).
- The set of linear inferences has no polynomial-time basis (unless $\text{coNP} = \text{NP}$) (Das and Straßburger, 2016).
What inferences are derivable from switch and medial?

- All 6-variable linear inferences are derivable from switch and medial (Šiprağa, 2012).
- The set of linear inferences has no polynomial-time basis (unless $\text{coNP} = \text{NP}$) (Das and Straßburger, 2016).
- A 36-variable linear inference that cannot be derived from switch and medial was found (Straßburger, 2012).
Existing Results

What inferences are derivable from switch and medial?

- All 6-variable linear inferences are derivable from switch and medial (Šipraga, 2012).
- The set of linear inferences has no polynomial-time basis (unless \( \text{coNP} = \text{NP} \)) (Das and Straßburger, 2016).
- A 36-variable linear inference that cannot be derived from switch and medial was found (Straßburger, 2012).
- This was improved to a 10 variable inference which cannot be derived from switch and medial (Das, 2013).

\[
\begin{align*}
(z \lor (w \land w')) & \land (y \lor y') \land (u \lor u') \land ((x \land x') \lor z') \\
\rightarrow (z \land (x \lor y)) & \lor (u \land x') \lor (w' \land u') \lor ((w \lor y') \land z')
\end{align*}
\]
Existing Results

What inferences are derivable from switch and medial?
- All 6-variable linear inferences are derivable from switch and medial (Šipraga, 2012).
- The set of linear inferences has no polynomial-time basis (unless \( \text{coNP} = \text{NP} \)) (Das and Straßburger, 2016).
- A 36-variable linear inference that cannot be derived from switch and medial was found (Straßburger, 2012).
- This was improved to a 10 variable inference which cannot be derived from switch and medial (Das, 2013).

\[
\begin{align*}
(z \lor (w \land w')) \land (y \lor y') \land (u \lor u') \land ((x \land x') \lor z') \\
\rightarrow (z \land (x \lor y)) \lor (u \land x') \lor (w' \land u') \lor ((w \lor y') \land z')
\end{align*}
\]

Question

What is the smallest inference that cannot be derived with switch and medial?
It turns out that it is sufficient to consider constant-free (unit-free), negation-free formulae. Relation webs (Guglielmi, 2007) give us a way to represent linear formulae which quotients out by associativity and commutativity.
It turns out that it is sufficient to consider constant-free (unit-free), negation-free formulae. Relation webs (Guglielmi, 2007) give us a way to represent linear formulae which quotients out by associativity and commutativity.

**Definition (Relation Web)**

A relation web is an undirected graph which is $P_4$-free, meaning none of its induced subgraphs are isomorphic to:

![Diagram of a relation web](image)
Operations on Relation Webs

The web for a formula \( \varphi \), \( \mathcal{W}(\varphi) \) has:

- Nodes given by the variables of \( \varphi \).
- There is an edge between \( x \) and \( y \) if the smallest subformula containing \( x \) and \( y \) has an \( \wedge \) as the top most connective.
The web for a formula $\varphi$, $\mathcal{W}(\varphi)$ has:

- Nodes given by the variables of $\varphi$.
- There is an edge between $x$ and $y$ if the smallest subformula containing $x$ and $y$ has an $\land$ as the top most connective.

$$w \land x \land (y \lor z) \rightarrow (w \lor x) \land (y \lor z)$$

\[\begin{array}{c}
\text{\textcolor{red}{w}} & \text{\textcolor{red}{x}} & \text{\textcolor{red}{w}} & \text{\textcolor{red}{x}} \\
\text{\textcolor{red}{y}} & \text{\textcolor{red}{z}} & \text{\textcolor{red}{y}} & \text{\textcolor{red}{z}}
\end{array}\]
The web for a formula $\varphi$, $\mathcal{W}(\varphi)$ has:

- Nodes given by the variables of $\varphi$.
- There is an edge between $x$ and $y$ if the smallest subformula containing $x$ and $y$ has an $\land$ as the top most connective.

$$w \land x \land (y \lor z) \rightarrow (w \lor x) \land (y \lor z)$$

To determine whether $\varphi \rightarrow \psi$ is valid, it suffices to know the maximum cliques of $\mathcal{W}(\varphi)$ and $\mathcal{W}(\psi)$.
Our main contribution is an algorithm that is able to search for linear inferences and determine whether they are derivable. We have also written an implementation capable of running this algorithm on linear inferences with up to 8 variables.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
- Find maximal cliques of all graphs.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
- Find maximal cliques of all graphs.
- Check each pair of formulae for inferences.
- Restrict to logically minimal inferences.
- Each remaining inference is either a single application of switch or medial, or is not derivable.
- Check remaining inferences.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
- Find maximal cliques of all graphs.
- Check each pair of formulae for inferences.
- Restrict to logically minimal inferences.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
- Find maximal cliques of all graphs.
- Check each pair of formulae for inferences.
- Restrict to logically minimal inferences.
  - Reduces the search space of inferences.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
- Find maximal cliques of all graphs.
- Check each pair of formulae for inferences.
- Restrict to logically minimal inferences.
  - Reduces the search space of inferences.
  - Each remaining inference is either a single application of switch or medial, or is not derivable.
Algorithm steps

- Generate a list of all $P_4$-free graphs.
- Identify isomorphism classes of these graphs.
- Find maximal cliques of all graphs.
- Check each pair of formulae for inferences.
- Restrict to logically minimal inferences.
  - Reduces the search space of inferences.
  - Each remaining inference is either a single application of switch or medial, or is not derivable.
- Check remaining inferences.
Our algorithm found that every logically minimal inference remaining was a case of a single switch or medial, and so every 7-variable inference is derivable.
Results

Our algorithm found that every logically minimal inference remaining was a case of a single switch or medial, and so every 7-variable inference is derivable. Our implementation was also able to run on 8 variables, and found two minimal undervivable inferences.
Results

Our algorithm found that every logically minimal inference remaining was a case of a single switch or medial, and so every 7-variable inference is derivable. Our implementation was also able to run on 8 variables, and found two minimal underivable inferences.

Answer

The smallest inference that is not derivable from switch and medial has 8 variables.
8-Variable Inferences

\[(z \lor (w \land w')) \land ((x \land x') \lor ((y \lor y') \land z'))\]

\[\rightarrow (z \land (x \lor y)) \lor ((w \lor y') \land ((w' \land x') \lor z'))\]

\[((w \land w') \lor (x \land x')) \land ((y \land y') \lor (z \land z'))\]

\[\rightarrow (w \land y) \lor ((x \lor (w' \land z')) \land ((x' \land y') \lor z'))\]
8-Variable Inferences

\[(z \lor (w \land w')) \land ((x \land x') \lor ((y \lor y') \land z'))\]
\[\rightarrow (z \land (x \lor y)) \lor ((w \lor y') \land ((w' \land x') \lor z'))\]

\[((w \land w') \lor (x \land x')) \land ((y \land y') \lor (z \land z'))\]
\[\rightarrow (w \land y) \lor ((x \lor (w' \land z')) \land ((x' \land y') \lor z))\]

Corollary

The second inference contradicts a previous conjecture (Das and Straßburger, 2016).
Conclusions

- Our implementation is able to search linear inferences for derivability, crucially leveraging graph theoretic tools.
- The implementation is written in a generic way which could allow it to be applied to other problems (including those where graphs are treated as first class objects such as (Nguyêñ and Seiller, 2018),(Acclavio, Horne, and Straßburger, 2020),(Calk, Das, and Waring, 2020)).
- This was used to solve an open problem of the size of the smallest inference which could not be derived from switch and medial.
- We further classified the 8-variable inferences, including finding one that contradicted a previous conjecture.


