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Linear Inferences in Classical Logic

We consider formulae to built with connectives ∧ and ∨, constants
⊥ and ⊤, and negation of variables.

Definition

A linear formula is a formula where each variable only appears at
most once.

Definition

A linear inference is a valid implication φ→ ψ, where φ and ψ are
linear formulae.

The set of linear inferences is coNP-complete.
The linear inferences are just the multiplicative fragments of Blass’
game semantics for linear logic.
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Switch and Medial

Switch

x ∧ (y ∨ z) → (x ∧ y) ∨ z

Switch underlies multiplicative linear logic.

Medial

(w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z)

Switch and medial are the logical fragment of deep inference proof
theory.
Medial allows locality of contraction.
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Composing Inferences with Rewriting

We would like to be able to build up more complicated inferences
from simpler ones such as switch and medial. This can be done
with rewriting.

w ∧ x ∧ (y ∨ z)⇝s w ∧ ((x ∧ y) ∨ z)

⇝s (w ∧ z) ∨ (x ∧ y)

⇝m (w ∨ x) ∧ (y ∨ z)
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Definition

Let ∼acu be the smallest congruence containing associativity,
commutativity, and unit laws.

Therefore we have

φ ∨ ψ ∼ac ψ ∨ φ φ ∧ (ψ ∧ χ) ∼ac (φ ∧ ψ) ∧ χ
φ ∧ ψ ∼ac ψ ∧ φ φ ∨ (ψ ∨ χ) ∼ac (φ ∨ ψ) ∨ χ

for associativity and commutativity and

φ ∧ ⊤ ∼u φ φ ∨ ⊥ ∼u φ ⊤ ∧ φ ∼u φ ⊥ ∨ φ ∼u φ

φ ∧ ⊥ ∼u ⊥ φ ∨ ⊤ ∼u ⊤ ⊥ ∧ φ ∼u ⊥ ⊤ ∨ φ ∼u ⊤

for unitality.
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Rewriting

Let →ms be the term rewrite system generated by switch and
medial.

Definition

Write φ⇝msu ψ if there are linear formulae φ′ and ψ′ with
φ ∼acu φ

′ →ms ψ
′ ∼acu ψ. Further write

∗
⇝msu for the reflexive

transitive closure of ⇝msu.
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Existing Results

What inferences are derivable from switch and medial?

All 6-variable linear inferences are derivable from switch and
medial (Šipraga, 2012).

The set of linear inferences has no polynomial-time basis
(unless coNP = NP) (Das and Straßburger, 2016).

A 36-variable linear inference that cannot be derived from
switch and medial was found (Straßburger, 2012).

This was improved to a 10 variable inference which cannot be
derived from switch and medial (Das, 2013).

(z ∨ (w ∧ w ′)) ∧ (y ∨ y ′) ∧ (u ∨ u′) ∧ ((x ∧ x ′) ∨ z ′)

→ (z ∧ (x ∨ y)) ∨ (u ∧ x ′) ∨ (w ′ ∧ u′) ∨ ((w ∨ y ′) ∧ z ′)

Question

What is the smallest inference that cannot be derived with switch
and medial?
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Relation Webs

It turns out that it is sufficient to consider constant-free
(unit-free), negation-free formulae.
Relation webs (Guglielmi, 2007) give us a way to represent linear
formulae which quotients out by associativity and commutativity.

Definition (Relation Web)

A relation web is an undirected graph which is P4-free, meaning
none of its induced subgraphs are isomorphic to:

w x

y z
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Operations on Relation Webs

The web for a formula φ, W(φ) has:

Nodes given by the variables of φ.

There is an edge between x and y if the smallest subformula
containing x and y has an ∧ as the top most connective.

w ∧ x ∧ (y ∨ z) → (w ∨ x) ∧ (y ∨ z)

w x

y z
→

w x

y z

To determine whether φ→ ψ is valid, it suffices to know the
maximum cliques of W(φ) and W(ψ)
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Our main contribution is an algorithm that is able to search for
linear inferences and determine whether they are derivable. We
have also written an implementation capable of running this
algorithm on linear inferences with up to 8 variables.
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Algorithm steps

Generate a list of all P4-free graphs.

Identify isomorphism classes of these graphs.

Find maximal cliques of all graphs.

Check each pair of formulae for inferences.

Restrict to logically minimal inferences.

Reduces the search space of inferences.
Each remaining inference is either a single application of
switch or medial, or is not derivable.

Check remaining inferences.
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Results

Our algorithm found that every logically minimal inference
remaining was a case of a single switch or medial, and so every
7-variable inference is derivable.

Our implementation was also able to run on 8 variables, and found
two minimal underivable inferences.

Answer

The smallest inference that is not derivable from switch and medial
has 8 variables.
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(z ∨ (w ∧ w ′)) ∧ ((x ∧ x ′) ∨ ((y ∨ y ′) ∧ z ′))

→ (z ∧ (x ∨ y)) ∨ ((w ∨ y ′) ∧ ((w ′ ∧ x ′) ∨ z ′))

((w ∧ w ′) ∨ (x ∧ x ′)) ∧ ((y ∧ y ′) ∨ (z ∧ z ′))

→ (w ∧ y) ∨ ((x ∨ (w ′ ∧ z ′)) ∧ ((x ′ ∧ y ′) ∨ z))

w

w ′

x

x ′

y

y ′

z

z ′ → w

w ′

x

x ′

y

y ′

z

z ′

Corollary

The second inference contradicts a previous conjecture (Das and
Straßburger, 2016).
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Conclusions

Our implementation is able to search linear inferences for
derivability, crucially leveraging graph theoretic tools.

The implementation is written in a generic way which could
allow it to be applied to other problems (including those
where graphs are treated as first class objects such as
(Nguyên and Seiller, 2018),(Acclavio, Horne, and Straßburger,
2020),(Calk, Das, and Waring, 2020)).

This was used to solve an open problem of the size of the
smallest inference which could not be derived from switch and
medial.

We further classified the 8-variable inferences, including
finding one that contradicted a previous conjecture.
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