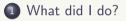
Strictly Associative Group Theory using Univalence

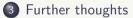
Alex Rice¹

University of Cambridge

HoTT/UF 2023



2 How did I do it?



Motivation

$$\begin{array}{l} \mathsf{InvUniqueLeft} : \forall \{\ell\} \ (\mathcal{G} : \mathsf{Group} \ \ell) \to \mathsf{Type} \ \ell \\ \mathsf{InvUniqueLeft} \ \mathcal{G} = \forall \ g \ h \to h \cdot g \equiv \mathsf{1g} \to h \equiv \mathsf{inv} \ g \\ & \mathsf{where} \\ & \mathsf{open} \ \mathsf{GroupStr} \ (\mathcal{G} \ \mathsf{.snd}) \end{array}$$

Motivation

```
InvUniqueLeft : \forall \{\ell\} (\mathcal{G} : \text{Group } \ell) \rightarrow \text{Type } \ell
InvUniqueLeft \mathcal{G} = \forall g \ h \rightarrow h \cdot g \equiv 1 g \rightarrow h \equiv inv g
   where
   open GroupStr (\mathcal{G} .snd)
inv-unique-left : \forall \{\ell\} (\mathcal{G} : \text{Group } \ell) \rightarrow \text{InvUniqueLeft } \mathcal{G}
inv-unique-left \mathcal{G} g h p =
   h \equiv \langle \text{sym}(\cdot \text{IdR } h) \rangle
    h \cdot 1g \equiv ( \operatorname{cong} (h \cdot ) (\operatorname{sym} (\cdot \operatorname{InvR} g)) )
    h \cdot (g \cdot inv g) \equiv \langle Assoc h g (inv g) \rangle
    (h \cdot g) \cdot \text{inv } g \equiv \langle \text{ cong } (\_\cdot \text{ inv } g) p \rangle
    \lg \cdot \operatorname{inv} g \equiv \langle \operatorname{-IdL} (\operatorname{inv} g) \rangle
    inv g
               where
       open GroupStr (\mathcal{G} .snd)
```

What did I do? How did I do it? Further thoughts

Motivation

```
InvUniqueLeft : \forall \{\ell\} (\mathcal{G} : \text{Group } \ell) \rightarrow \text{Type } \ell
InvUniqueLeft \mathcal{G} = \forall g \ h \rightarrow h \cdot g \equiv 1 g \rightarrow h \equiv inv g
   where
   open GroupStr (\mathcal{G} .snd)
inv-unique-left-strict : \forall \{\ell\} (\mathcal{G} : \text{Group } \ell) \rightarrow \text{InvUniqueLeft } \mathcal{G}
inv-unique-left-strict \mathcal{G} = strictify InvUniqueLeft
   \lambda \not e h \not p \rightarrow
       h \cdot 1g \equiv ( \operatorname{cong} (h \cdot ) (\operatorname{sym} (\cdot \operatorname{InvR} g)) )
       h \cdot g \cdot inv g \equiv (cong (-inv g)) p
       1g \cdot inv g \square
       where
          open GroupStr (RSymGroup \mathcal{G} .snd)
          open import Groups. Reasoning \mathcal{G} using (strictify)
```

Strictify

 \bullet Given a group $\mathcal G,$ we create a new group RSymGroup $\mathcal G.$

Theorem (Cayley's Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

- In RSymGroup \mathcal{G} , various rules hold by reflexivity.
- We show that RSymGroup \mathcal{G} is isomorphic to \mathcal{G} .
- \bullet By univalence and the structure identity principle, RSymGroup ${\cal G}$ is equal to ${\cal G}.$
- \bullet The strictify function transports a proof from RSymGroup ${\cal G}$ back to ${\cal G}.$

In the strictified group the following equations hold definitionally:

- a(bc) = (ab)c,
- a1 = a = 1a,
- $a^{-1-1} = a$,
- and $(fg)^{-1} = g^{-1} \cdot f^{-1}$.

Functions compose strictly

Theorem (Cayley's Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

Functions compose strictly

Theorem (Cayley's Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

$$_\circ_: (f : B \to C) \to (g : A \to B) \to (A \to C)$$

 $(f \circ g) x = f (g x)$

$$\begin{array}{rl} \mathsf{comp-assoc} : & (f: \ C \to D) \\ & \to (g: \ B \to C) \\ & \to (h: \ A \to B) \\ & \to f \circ (g \circ h) \equiv (f \circ g) \circ h \end{array}$$
$$\begin{array}{r} \mathsf{comp-assoc} \ f \ g \ h = \mathsf{refl} \end{array}$$

Do invertible functions compose strictly?

```
record Inverse (A : Type) (B : Type) : Type where
field

\uparrow : A \rightarrow B

\downarrow : B \rightarrow A

\varepsilon : \forall x \rightarrow \downarrow (\uparrow x) \equiv x

\eta : \forall y \rightarrow \uparrow (\downarrow y) \equiv y
```

Strict invertible functions

record Inverse (A : Type) (B : Type) : Type where
constructor [_,_,_]
field
$\uparrow: A ightarrow B$
$\downarrow:B\to A$
$arepsilon: orall \ b \ \{x\} ightarrow x \equiv \downarrow \ b ightarrow \uparrow x \equiv b$
$\eta: orall a \left\{y ight\} ightarrow y \equiv \uparrow a ightarrow \downarrow y \equiv a$
o : Inverse $B \ C ightarrow$ Inverse $A \ B ightarrow$ Inverse $A \ C$
o \lfloor f , g , p , q \rfloor \lfloor f' , g' , p' , q' \rfloor $=$
$ig \ (\lambda \; x o f \; (f' \; x))$,
$(\lambda {m y} ightarrow {m g}^{\prime} ({m g} {m y}))$,
$(\lambda b r ightarrow p b (p' (g b) r))$,
$(\lambda \; a \; r o q' \; a \; (q \; (f' \; a) \; r)) \; ig]$

Strict invertible functions

```
assoc : (f : Inverse \ C \ D)
        \rightarrow (g : Inverse B C)
        \rightarrow (h : Inverse A B)
        \rightarrow f \circ (g \circ h) \equiv (f \circ g) \circ h
assoc f g h = refl
id-inv: Inverse A A
id-inv = |(\lambda x \rightarrow x), (\lambda x \rightarrow x)|
               (\lambda \ b \ r \rightarrow r), (\lambda \ a \ r \rightarrow r)
id-unit-left : (f : Inverse A B)
                \rightarrow id-inv \circ f = f
id-unit-left f = refl
id-unit-right : (f : Inverse \ A \ B)
                  \rightarrow f \circ id - inv = f
id-unit-right f = refl
```

Strict invertible functions

```
inv-inv \cdot Inverse A B \rightarrow Inverse B A
inv-inv |f, g, \varepsilon, \eta| = |g, f, \eta, \varepsilon|
inv-involution : (f : Inverse A B)
                 \rightarrow inv-inv (inv-inv f) \equiv f
inv-involution f = refl
inv-comp : (f : Inverse B C)
            \rightarrow (g : Inverse A B)
            \rightarrow inv-inv (f \circ g) \equiv inv-inv g \circ inv-inv f
inv-comp f g = refl
```

Representable functions

The map $\iota : g \mapsto g \cdot _{-}$ includes the group \mathcal{G} in the symmetric group. We now want to restrict the symmetric group to those functions that are in the image of ι .

Proposition

A function $f : \mathcal{G} \to \mathcal{G}$ is in the image of ι if and only if for all $g, h \in \mathcal{G}$, $f(g \cdot h) = f(g) \cdot h$.

Representable functions

The map $\iota : g \mapsto g \cdot _{-}$ includes the group \mathcal{G} in the symmetric group. We now want to restrict the symmetric group to those functions that are in the image of ι .

Proposition

A function $f : \mathcal{G} \to \mathcal{G}$ is in the image of ι if and only if for all $g, h \in \mathcal{G}$, $f(g \cdot h) = f(g) \cdot h$.

Representable : Inverse $\langle \mathcal{G} \rangle \langle \mathcal{G} \rangle \rightarrow \text{Type}$ Representable $f = \forall x \ g \ h \rightarrow x \equiv g \cdot h \rightarrow \uparrow f \ x \equiv \uparrow f \ g \cdot h$

 $\begin{array}{l} \mathsf{Repr} : \mathsf{Type} \\ \mathsf{Repr} = \Sigma[\ f \in \mathsf{Inverse} \ \langle \ \mathcal{G} \ \rangle \ \langle \ \mathcal{G} \ \rangle \] \ \mathsf{Representable} \ f \end{array}$

Representable symmetric group

• Let RSymGroup \mathcal{G} be the subgroup of the symmetric group on \mathcal{G} consisting of those functions that are representable.

- Let RSymGroup \mathcal{G} be the subgroup of the symmetric group on \mathcal{G} consisting of those functions that are representable.
- This subgroup still has strict composition.

- Let RSymGroup G be the subgroup of the symmetric group on G consisting of those functions that are representable.
- This subgroup still has strict composition.
- The inclusion ι is an isomorphism from \mathcal{G} to the representable symmetric group.

- Let RSymGroup \mathcal{G} be the subgroup of the symmetric group on \mathcal{G} consisting of those functions that are representable.
- This subgroup still has strict composition.
- The inclusion ι is an isomorphism from $\mathcal G$ to the representable symmetric group.
- By univalence we get an equality:

 $\iota \equiv \mathcal{G} : \mathcal{G} \equiv \mathsf{RSymGroup} \ \mathcal{G}$

- Let RSymGroup \mathcal{G} be the subgroup of the symmetric group on \mathcal{G} consisting of those functions that are representable.
- This subgroup still has strict composition.
- \bullet The inclusion ι is an isomorphism from ${\cal G}$ to the representable symmetric group.
- By univalence we get an equality:

 $\iota \equiv \mathcal{G}: \mathcal{G} \equiv \mathsf{RSymGroup}\ \mathcal{G}$

• This lets us define:

Further thoughts

Further thoughts

Does this all work with categories instead of groups?

Conclusion

- For each group \mathcal{G} we can generate an isomorphic group RSymGroup \mathcal{G} .
- This group has nice definitional properties
- Univalence allows us to generate an equality between the two groups.
- This allows us to prove theorems about an arbitrary group by instead proving them on the strictified group.
- https://alexarice.github.io/posts/sgtuf/Strict-Group-Theory-UF.html