
Strictly Associative Group Theory using Univalence

Alex Rice1

University of Cambridge

HoTT/UF 2023

What did I do?
How did I do it?
Further thoughts

Outline

1 What did I do?

2 How did I do it?

3 Further thoughts

1 / 13

What did I do?
How did I do it?
Further thoughts

Motivation

InvUniqueLeft : ∀ {ℓ} (G : Group ℓ) → Type ℓ
InvUniqueLeft G = ∀ g h → h · g ≡ 1g → h ≡ inv g
where
open GroupStr (G .snd)

2 / 13

What did I do?
How did I do it?
Further thoughts

Motivation

InvUniqueLeft : ∀ {ℓ} (G : Group ℓ) → Type ℓ
InvUniqueLeft G = ∀ g h → h · g ≡ 1g → h ≡ inv g
where
open GroupStr (G .snd)

inv-unique-left : ∀ {ℓ} (G : Group ℓ) → InvUniqueLeft G
inv-unique-left G g h p =
h ≡⟨ sym (·IdR h) ⟩
h · 1g ≡⟨ cong (h ·) (sym (·InvR g)) ⟩
h · (g · inv g) ≡⟨ ·Assoc h g (inv g) ⟩
(h · g) · inv g ≡⟨ cong (· inv g) p ⟩
1g · inv g ≡⟨ ·IdL (inv g) ⟩
inv g
where
open GroupStr (G .snd) 2 / 13

What did I do?
How did I do it?
Further thoughts

Motivation

InvUniqueLeft : ∀ {ℓ} (G : Group ℓ) → Type ℓ
InvUniqueLeft G = ∀ g h → h · g ≡ 1g → h ≡ inv g
where
open GroupStr (G .snd)

inv-unique-left-strict : ∀ {ℓ} (G : Group ℓ) → InvUniqueLeft G
inv-unique-left-strict G = strictify InvUniqueLeft
λ g h p →
h · 1g ≡⟨ cong (h ·) (sym (·InvR g)) ⟩
h · g · inv g ≡⟨ cong (· inv g) p ⟩
1g · inv g
where
open GroupStr (RSymGroup G .snd)
open import Groups.Reasoning G using (strictify)

2 / 13

What did I do?
How did I do it?
Further thoughts

Strictify

Given a group G, we create a new group RSymGroup G.

Theorem (Cayley’s Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

In RSymGroup G, various rules hold by reflexivity.

We show that RSymGroup G is isomorphic to G.
By univalence and the structure identity principle, RSymGroup G is equal to G.
The strictify function transports a proof from RSymGroup G back to G.

3 / 13

What did I do?
How did I do it?
Further thoughts

In the strictified group the following equations hold definitionally:

a(bc) = (ab)c ,

a1 = a = 1a,

a−1−1
= a,

and (fg)−1 = g−1 · f −1.

4 / 13

What did I do?
How did I do it?
Further thoughts

Functions compose strictly

Theorem (Cayley’s Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

◦ : (f : B → C) → (g : A → B) → (A → C)
(f ◦ g) x = f (g x)

comp-assoc : (f : C → D)
→ (g : B → C)
→ (h : A → B)
→ f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

comp-assoc f g h = refl

5 / 13

What did I do?
How did I do it?
Further thoughts

Functions compose strictly

Theorem (Cayley’s Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

◦ : (f : B → C) → (g : A → B) → (A → C)
(f ◦ g) x = f (g x)

comp-assoc : (f : C → D)
→ (g : B → C)
→ (h : A → B)
→ f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

comp-assoc f g h = refl

5 / 13

What did I do?
How did I do it?
Further thoughts

Do invertible functions compose strictly?

record Inverse (A : Type) (B : Type) : Type where
field

↑ : A → B
↓ : B → A
ε : ∀ x → ↓ (↑ x) ≡ x
η : ∀ y → ↑ (↓ y) ≡ y

6 / 13

What did I do?
How did I do it?
Further thoughts

Strict invertible functions

record Inverse (A : Type) (B : Type) : Type where
constructor ⌊ , , , ⌋
field

↑ : A → B
↓ : B → A
ε : ∀ b {x} → x ≡ ↓ b → ↑ x ≡ b
η : ∀ a {y} → y ≡ ↑ a → ↓ y ≡ a

◦ : Inverse B C → Inverse A B → Inverse A C
◦ ⌊ f , g , p , q ⌋ ⌊ f’ , g’ , p’ , q’ ⌋ =
⌊ (λ x → f (f’ x)) ,
(λ y → g’ (g y)) ,
(λ b r → p b (p’ (g b) r)) ,
(λ a r → q’ a (q (f’ a) r)) ⌋

7 / 13

What did I do?
How did I do it?
Further thoughts

Strict invertible functions

assoc : (f : Inverse C D)
→ (g : Inverse B C)
→ (h : Inverse A B)
→ f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

assoc f g h = refl

id-inv : Inverse A A
id-inv = ⌊ (λ x → x) , (λ x → x) ,

(λ b r → r) , (λ a r → r) ⌋
id-unit-left : (f : Inverse A B)

→ id-inv ◦ f ≡ f
id-unit-left f = refl

id-unit-right : (f : Inverse A B)
→ f ◦ id-inv ≡ f

id-unit-right f = refl 8 / 13

What did I do?
How did I do it?
Further thoughts

Strict invertible functions

inv-inv : Inverse A B → Inverse B A
inv-inv ⌊ f , g , ε , η ⌋ = ⌊ g , f , η , ε ⌋

inv-involution : (f : Inverse A B)
→ inv-inv (inv-inv f) ≡ f

inv-involution f = refl

inv-comp : (f : Inverse B C)
→ (g : Inverse A B)
→ inv-inv (f ◦ g) ≡ inv-inv g ◦ inv-inv f

inv-comp f g = refl

9 / 13

What did I do?
How did I do it?
Further thoughts

Representable functions

The map ι : g 7→ g · includes the group G in the symmetric group. We now want to
restrict the symmetric group to those functions that are in the image of ι.

Proposition

A function f : G → G is in the image of ι if and only if for all g , h ∈ G,
f (g · h) = f (g) · h.

Representable : Inverse ⟨ G ⟩ ⟨ G ⟩ → Type
Representable f = ∀ x g h → x ≡ g · h → ↑ f x ≡ ↑ f g · h

Repr : Type
Repr = Σ[f ∈ Inverse ⟨ G ⟩ ⟨ G ⟩] Representable f

10 / 13

What did I do?
How did I do it?
Further thoughts

Representable functions

The map ι : g 7→ g · includes the group G in the symmetric group. We now want to
restrict the symmetric group to those functions that are in the image of ι.

Proposition

A function f : G → G is in the image of ι if and only if for all g , h ∈ G,
f (g · h) = f (g) · h.

Representable : Inverse ⟨ G ⟩ ⟨ G ⟩ → Type
Representable f = ∀ x g h → x ≡ g · h → ↑ f x ≡ ↑ f g · h

Repr : Type
Repr = Σ[f ∈ Inverse ⟨ G ⟩ ⟨ G ⟩] Representable f

10 / 13

What did I do?
How did I do it?
Further thoughts

Representable symmetric group

Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.

This subgroup still has strict composition.
The inclusion ι is an isomorphism from G to the representable symmetric group.
By univalence we get an equality:

ι≡ G : G ≡ RSymGroup G
This lets us define:

strictify : (G : Group ℓ-zero)
→ (P : Group ℓ-zero → Type)
→ P (RSymGroup G)
→ P G

strictify G P p = transport (sym (cong P (ι≡ G))) p

11 / 13

What did I do?
How did I do it?
Further thoughts

Representable symmetric group

Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.
This subgroup still has strict composition.

The inclusion ι is an isomorphism from G to the representable symmetric group.
By univalence we get an equality:

ι≡ G : G ≡ RSymGroup G
This lets us define:

strictify : (G : Group ℓ-zero)
→ (P : Group ℓ-zero → Type)
→ P (RSymGroup G)
→ P G

strictify G P p = transport (sym (cong P (ι≡ G))) p

11 / 13

What did I do?
How did I do it?
Further thoughts

Representable symmetric group

Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.
This subgroup still has strict composition.
The inclusion ι is an isomorphism from G to the representable symmetric group.

By univalence we get an equality:

ι≡ G : G ≡ RSymGroup G
This lets us define:

strictify : (G : Group ℓ-zero)
→ (P : Group ℓ-zero → Type)
→ P (RSymGroup G)
→ P G

strictify G P p = transport (sym (cong P (ι≡ G))) p

11 / 13

What did I do?
How did I do it?
Further thoughts

Representable symmetric group

Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.
This subgroup still has strict composition.
The inclusion ι is an isomorphism from G to the representable symmetric group.
By univalence we get an equality:

ι≡ G : G ≡ RSymGroup G

This lets us define:

strictify : (G : Group ℓ-zero)
→ (P : Group ℓ-zero → Type)
→ P (RSymGroup G)
→ P G

strictify G P p = transport (sym (cong P (ι≡ G))) p

11 / 13

What did I do?
How did I do it?
Further thoughts

Representable symmetric group

Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.
This subgroup still has strict composition.
The inclusion ι is an isomorphism from G to the representable symmetric group.
By univalence we get an equality:

ι≡ G : G ≡ RSymGroup G
This lets us define:

strictify : (G : Group ℓ-zero)
→ (P : Group ℓ-zero → Type)
→ P (RSymGroup G)
→ P G

strictify G P p = transport (sym (cong P (ι≡ G))) p

11 / 13

What did I do?
How did I do it?
Further thoughts

Further thoughts

Does this all work with categories instead of groups?

12 / 13

What did I do?
How did I do it?
Further thoughts

Further thoughts

Does this all work with categories instead of groups?

12 / 13

What did I do?
How did I do it?
Further thoughts

Conclusion

For each group G we can generate an isomorphic group RSymGroup G.
This group has nice definitional properties

Univalence allows us to generate an equality between the two groups.

This allows us to prove theorems about an arbitrary group by instead proving them
on the strictified group.

https://alexarice.github.io/posts/sgtuf/Strict-Group-Theory-UF.html

13 / 13

https://alexarice.github.io/posts/sgtuf/Strict-Group-Theory-UF.html

	What did I do?
	How did I do it?
	Further thoughts

