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What did | do?

Motivation

InvUniqueLeft : V {¢} (G : Group ¢) — Type ¢
InvUniqueLeft G =V gh—h-g=1lg— h=invg
where
open GroupStr (G .snd)
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inv-unique-left : V {¢} (G : Group ¢) — InvUniqueLeft G
inv-unique-left G g h p =

h =(sym (-IdR h) )

h-1lg =( cong (h -_) (sym (:InvR g)) )
h-(g-invg)=(-Assoc h g (inv g))

(h-g) - invg = cong (-invg)p)

lg -inv g =(-ldL (inv g) )
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What did | do?

Motivation

InvUniqueLeft : V {¢} (G : Group ¢) — Type ¢
InvUniqueLeft G =V gh—h-g=1lg— h=invg
where
open GroupStr (G .snd)

inv-unique-left-strict : ¥V {£} (G : Group ¢) — InvUniquelLeft G
inv-unique-left-strict G = strictify InvUniqueleft

Aghp—
h-1lg =( cong (h -_) (sym (-InvR g)) )
h-g-invg=(cong (—invg)p )
lg -invg [
where

open GroupStr (RSymGroup G .snd)
open import Groups.Reasoning G using (strictify)
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What did | do?

Strictify

@ Given a group G, we create a new group RSymGroup G.

Theorem (Cayley's Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

@ In RSymGroup G, various rules hold by reflexivity.

@ We show that RSymGroup G is isomorphic to G.

@ By univalence and the structure identity principle, RSymGroup G is equal to G.
@ The strictify function transports a proof from RSymGroup G back to G.
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What did | do?

In the strictified group the following equations hold definitionally:
e a(bc) = (ab)c,
@ al = a=14
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How did | do it?

Functions compose strictly

Theorem (Cayley's Theorem)

Every group is isomorphic to a subgroup of a symmetric group.
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How did | do it?

Functions compose strictly

Theorem (Cayley's Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

o :(f:B—>C)—(g:A—=-B)—(A— ()
(fog)x="f(gx)

comp-assoc : (f: C — D)
—(g: B—C)
— (h: A= B)
—fo(goh)=(fog)oh
comp-assoc f g h = refl
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How did | do it?

Do invertible functions compose strictly?

record Inverse (A : Type) (B : Type) : Type where
field
T:A—B
l:B—A
e:Vx =1 (Tx)
n:vVy—=1y)

X
y
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How did | do it?

Strict invertible functions

record Inverse (A : Type) (B : Type) : Type where

constructor |_,,,-]

field

T:A—= B

l:B—A
e:Vbhb{x}o>x=|b—>Tx=b
n:vVa{y}—>y=ta—ly=a

_o_: Inverse B C — Inverse A B — Inverse A C
f.g.p.qllf. g . p.q]=
)

_O

7/13



How did | do it?

Strict invertible functions

assoc : (f : Inverse C D)
— (g : Inverse B C)
— (h: Inverse A B)

—fo(goh)=(fog)oh
assoc f g h = refl

id-inv : Inverse A A
id-inv =] (Ax = x), (Ax = x),

Abr—r),(Aar—r)|
id-unit-left :  (f : Inverse A B)

— id-invo f = f
id-unit-left f = refl
id-unit-right :  (f : Inverse A B)

— f oid-inv = f

id-unit-richt f — refl 8/13



How did | do it?

Strict invertible functions

inv-inv : Inverse A B — Inverse B A
inv-inv | f, g, e, n]=|g,f, n, e]

inv-involution :  (f : Inverse A B)
— inv-inv (inv-inv ) = f
inv-involution f = refl

inv-comp :  (f : Inverse B C)

— (g : Inverse A B)

— inv-inv (f o g) = inv-inv g o inv-inv f
inv-comp f g = refl
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How did | do it?

Representable functions

The map ¢ : g — g - _includes the group G in the symmetric group. We now want to
restrict the symmetric group to those functions that are in the image of ¢.

Proposition

A function f : G — G is in the image of v if and only if for all g, h € G,
f(g-h)="~(g) h
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How did | do it?

Representable functions

The map ¢ : g — g - _includes the group G in the symmetric group. We now want to
restrict the symmetric group to those functions that are in the image of ¢.

Proposition

A function f : G — G is in the image of v if and only if for all g, h € G,
f(g-h)="~(g) h

Representable : Inverse ( G ) ( G ) — Type
Representable f =V xgh—x=g-h—=1Tfx=1fg-h

Repr : Type
Repr = X[ f € Inverse ( G ) ( G ) | Representable f
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How did | do it?

Representable symmetric group

@ Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.
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How did | do it?

Representable symmetric group

@ Let RSymGroup G be the subgroup of the symmetric group on G consisting of
those functions that are representable.

@ This subgroup still has strict composition.

@ The inclusion ¢ is an isomorphism from G to the representable symmetric group.

@ By univalence we get an equality:

1= G : G = RSymGroup G
@ This lets us define:
strictify : (G : Group (-zero)
— (P : Group ¢-zero — Type)
— P (RSymGroup G)

— PG
strictify G P p = transport (sym (cong P (= G))) p
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Further thoughts

Further thoughts
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Further thoughts

Further thoughts

Does this all work with categories instead of groups?
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Further thoughts

Conclusion

@ For each group G we can generate an isomorphic group RSymGroup G.
@ This group has nice definitional properties
@ Univalence allows us to generate an equality between the two groups.

@ This allows us to prove theorems about an arbitrary group by instead proving them
on the strictified group.
@ https://alexarice.github.io/posts/sgtuf/Strict-Group-Theory-UF.html
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