In this file we show that given a set X, we can form a group, using the special definition of permutation from Groups.Function.Inverse which is strictly associative and unital.
Module header
{-# OPTIONS --safe --cubical #-}
module Groups.Symmetric where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Group
open import Groups.Function.Inverse
private
variable
ℓ ℓ′ : Level
Symmetric-Group : (X : Type ℓ) → isSet X → Group ℓ Symmetric-Group X isSetX = makeGroup -- Id id-inv -- Operation _∘_ -- Inverse inv-inv -- Group Axioms (isSetInv isSetX isSetX) inv-comp-assoc id-unit-left id-unit-left (inv-inv-right isSetX) (inv-inv-left isSetX)