{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Algebra.Construct.NaturalChoice.Max
{a ℓ₁ ℓ₂} (totalOrder : TotalOrder a ℓ₁ ℓ₂) where
open import Algebra.Core
open import Algebra.Definitions
open import Relation.Binary.Construct.Converse using ()
renaming (totalOrder to flip)
open TotalOrder totalOrder renaming (Carrier to A)
import Algebra.Construct.NaturalChoice.Min (flip totalOrder) as Min
infixl 6 _⊔_
_⊔_ : Op₂ A
_⊔_ = Min._⊓_
open Min public using ()
renaming
( ⊓-cong to ⊔-cong
; ⊓-idem to ⊔-idem
; ⊓-sel to ⊔-sel
; ⊓-assoc to ⊔-assoc
; ⊓-comm to ⊔-comm
; ⊓-identityˡ to ⊔-identityˡ
; ⊓-identityʳ to ⊔-identityʳ
; ⊓-identity to ⊔-identity
; ⊓-zeroˡ to ⊔-zeroˡ
; ⊓-zeroʳ to ⊔-zeroʳ
; ⊓-zero to ⊔-zero
; ⊓-isMagma to ⊔-isMagma
; ⊓-isSemigroup to ⊔-isSemigroup
; ⊓-isBand to ⊔-isBand
; ⊓-isSemilattice to ⊔-isSemilattice
; ⊓-isMonoid to ⊔-isMonoid
; ⊓-isSelectiveMagma to ⊔-isSelectiveMagma
; ⊓-magma to ⊔-magma
; ⊓-semigroup to ⊔-semigroup
; ⊓-band to ⊔-band
; ⊓-semilattice to ⊔-semilattice
; ⊓-monoid to ⊔-monoid
; ⊓-selectiveMagma to ⊔-selectiveMagma
; x⊓y≈y⇒y≤x to x⊔y≈y⇒x≤y
; x⊓y≈x⇒x≤y to x⊔y≈x⇒y≤x
)