{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Algebra.Structures.Biased
{a ℓ} {A : Set a}
(_≈_ : Rel A ℓ)
where
open import Algebra.Core
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
import Algebra.Consequences.Setoid as Consequences
open import Data.Product using (_,_; proj₁; proj₂)
open import Level using (_⊔_)
record IsCommutativeMonoidˡ (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
identityˡ : LeftIdentity ε ∙
comm : Commutative ∙
open IsSemigroup isSemigroup
private
identityʳ : RightIdentity ε ∙
identityʳ = Consequences.comm+idˡ⇒idʳ setoid comm identityˡ
identity : Identity ε ∙
identity = (identityˡ , identityʳ)
isCommutativeMonoid : IsCommutativeMonoid ∙ ε
isCommutativeMonoid = record
{ isMonoid = record
{ isSemigroup = isSemigroup
; identity = identity
}
; comm = comm
}
open IsCommutativeMonoidˡ public
using () renaming (isCommutativeMonoid to isCommutativeMonoidˡ)
record IsCommutativeMonoidʳ (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
identityʳ : RightIdentity ε ∙
comm : Commutative ∙
open IsSemigroup isSemigroup
private
identityˡ : LeftIdentity ε ∙
identityˡ = Consequences.comm+idʳ⇒idˡ setoid comm identityʳ
identity : Identity ε ∙
identity = (identityˡ , identityʳ)
isCommutativeMonoid : IsCommutativeMonoid ∙ ε
isCommutativeMonoid = record
{ isMonoid = record
{ isSemigroup = isSemigroup
; identity = identity
}
; comm = comm
}
open IsCommutativeMonoidʳ public
using () renaming (isCommutativeMonoid to isCommutativeMonoidʳ)
record IsCommutativeSemiringˡ (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isCommutativeMonoid : IsCommutativeMonoid + 0#
*-isCommutativeMonoid : IsCommutativeMonoid * 1#
distribʳ : * DistributesOverʳ +
zeroˡ : LeftZero 0# *
private
module +-CM = IsCommutativeMonoid +-isCommutativeMonoid
open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public
using () renaming (comm to *-comm)
distribˡ : * DistributesOverˡ +
distribˡ = Consequences.comm+distrʳ⇒distrˡ
+-CM.setoid +-CM.∙-cong *-comm distribʳ
distrib : * DistributesOver +
distrib = (distribˡ , distribʳ)
zeroʳ : RightZero 0# *
zeroʳ = Consequences.comm+zeˡ⇒zeʳ +-CM.setoid *-comm zeroˡ
zero : Zero 0# *
zero = (zeroˡ , zeroʳ)
isCommutativeSemiring : IsCommutativeSemiring + * 0# 1#
isCommutativeSemiring = record
{ isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isMonoid = *-CM.isMonoid
; distrib = distrib
}
; zero = zero
}
; *-comm = *-comm
}
open IsCommutativeSemiringˡ public
using () renaming (isCommutativeSemiring to isCommutativeSemiringˡ)
record IsCommutativeSemiringʳ (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isCommutativeMonoid : IsCommutativeMonoid + 0#
*-isCommutativeMonoid : IsCommutativeMonoid * 1#
distribˡ : * DistributesOverˡ +
zeroʳ : RightZero 0# *
private
module +-CM = IsCommutativeMonoid +-isCommutativeMonoid
open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public
using () renaming (comm to *-comm)
distribʳ : * DistributesOverʳ +
distribʳ = Consequences.comm+distrˡ⇒distrʳ
+-CM.setoid +-CM.∙-cong *-comm distribˡ
distrib : * DistributesOver +
distrib = (distribˡ , distribʳ)
zeroˡ : LeftZero 0# *
zeroˡ = Consequences.comm+zeʳ⇒zeˡ +-CM.setoid *-comm zeroʳ
zero : Zero 0# *
zero = (zeroˡ , zeroʳ)
isCommutativeSemiring : IsCommutativeSemiring + * 0# 1#
isCommutativeSemiring = record
{ isSemiring = record
{ isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-isMonoid = *-CM.isMonoid
; distrib = distrib
}
; zero = zero
}
; *-comm = *-comm
}
open IsCommutativeSemiringʳ public
using () renaming (isCommutativeSemiring to isCommutativeSemiringʳ)
record IsRingWithoutAnnihilatingZero (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
: Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-isMonoid : IsMonoid * 1#
distrib : * DistributesOver +
private
module + = IsAbelianGroup +-isAbelianGroup
module * = IsMonoid *-isMonoid
open + using (setoid) renaming (∙-cong to +-cong)
open * using () renaming (∙-cong to *-cong)
zeroˡ : LeftZero 0# *
zeroˡ = Consequences.assoc+distribʳ+idʳ+invʳ⇒zeˡ setoid
+-cong *-cong +.assoc (proj₂ distrib) +.identityʳ +.inverseʳ
zeroʳ : RightZero 0# *
zeroʳ = Consequences.assoc+distribˡ+idʳ+invʳ⇒zeʳ setoid
+-cong *-cong +.assoc (proj₁ distrib) +.identityʳ +.inverseʳ
zero : Zero 0# *
zero = (zeroˡ , zeroʳ)
isRing : IsRing + * -_ 0# 1#
isRing = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-isMonoid = *-isMonoid
; distrib = distrib
; zero = zero
}
open IsRingWithoutAnnihilatingZero public
using () renaming (isRing to isRingWithoutAnnihilatingZero)