{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Any where
open import Data.Empty
open import Data.Fin.Base
open import Data.List.Base as List using (List; []; [_]; _∷_)
open import Data.Product as Prod using (∃; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Level using (Level; _⊔_)
open import Relation.Nullary using (¬_; yes; no)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary.Sum using (_⊎-dec_)
open import Relation.Unary hiding (_∈_)
private
variable
a p q : Level
A : Set a
data Any {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where
here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs)
module _ {P : Pred A p} {x xs} where
head : ¬ Any P xs → Any P (x ∷ xs) → P x
head ¬pxs (here px) = px
head ¬pxs (there pxs) = contradiction pxs ¬pxs
tail : ¬ P x → Any P (x ∷ xs) → Any P xs
tail ¬px (here px) = ⊥-elim (¬px px)
tail ¬px (there pxs) = pxs
module _ {P : Pred A p} {Q : Pred A q} where
map : P ⊆ Q → Any P ⊆ Any Q
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
module _ {P : Pred A p} where
index : ∀ {xs} → Any P xs → Fin (List.length xs)
index (here px) = zero
index (there pxs) = suc (index pxs)
lookup : ∀ {xs} → Any P xs → A
lookup {xs} p = List.lookup xs (index p)
_∷=_ : ∀ {xs} → Any P xs → A → List A
_∷=_ {xs} x∈xs v = xs List.[ index x∈xs ]∷= v
infixl 4 _─_
_─_ : ∀ xs → Any P xs → List A
xs ─ x∈xs = xs List.─ index x∈xs
satisfied : ∀ {xs} → Any P xs → ∃ P
satisfied (here px) = _ , px
satisfied (there pxs) = satisfied pxs
module _ {P : Pred A p} {x xs} where
toSum : Any P (x ∷ xs) → P x ⊎ Any P xs
toSum (here px) = inj₁ px
toSum (there pxs) = inj₂ pxs
fromSum : P x ⊎ Any P xs → Any P (x ∷ xs)
fromSum (inj₁ px) = here px
fromSum (inj₂ pxs) = there pxs
module _ {P : Pred A p} where
any : Decidable P → Decidable (Any P)
any P? [] = no λ()
any P? (x ∷ xs) = Dec.map′ fromSum toSum (P? x ⊎-dec any P? xs)
satisfiable : Satisfiable P → Satisfiable (Any P)
satisfiable (x , Px) = [ x ] , here Px