{-# OPTIONS --without-K --safe #-}
module Reflection.Abstraction where
open import Data.List.Base as List using (List)
open import Data.Product using (_×_; _,_; uncurry; <_,_>)
import Data.String as String
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
private
variable
A B : Set
open import Agda.Builtin.Reflection public using (Abs)
open Abs public
map : (A → B) → Abs A → Abs B
map f (abs s x) = abs s (f x)
abs-injective₁ : ∀ {i i′} {a a′ : A} → abs i a ≡ abs i′ a′ → i ≡ i′
abs-injective₁ refl = refl
abs-injective₂ : ∀ {i i′} {a a′ : A} → abs i a ≡ abs i′ a′ → a ≡ a′
abs-injective₂ refl = refl
abs-injective : ∀ {i i′} {a a′ : A} → abs i a ≡ abs i′ a′ → i ≡ i′ × a ≡ a′
abs-injective = < abs-injective₁ , abs-injective₂ >
unAbs : Abs A → A
unAbs (abs s a) = a
unAbs-dec : {x y : Abs A} → Dec (unAbs x ≡ unAbs y) → Dec (x ≡ y)
unAbs-dec {x = abs i a} {abs i′ a′} a≟a′ =
Dec.map′ (uncurry (cong₂ abs)) abs-injective ((i String.≟ i′) ×-dec a≟a′)
≡-dec : Decidable {A = A} _≡_ → Decidable {A = Abs A} _≡_
≡-dec _≟_ x y = unAbs-dec (unAbs x ≟ unAbs y)