{-# OPTIONS --without-K --safe #-}
module Reflection.Meta where
import Data.Nat.Properties as ℕₚ
open import Function
open import Relation.Nullary.Decidable using (map′)
open import Relation.Binary
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality
open import Agda.Builtin.Reflection public
using (Meta) renaming (primMetaToNat to toℕ)
open import Agda.Builtin.Reflection.Properties public
renaming (primMetaToNatInjective to toℕ-injective)
_≈_ : Rel Meta _
_≈_ = _≡_ on toℕ
_≈?_ : Decidable _≈_
_≈?_ = On.decidable toℕ _≡_ ℕₚ._≟_
infix 4 _≟_
_≟_ : DecidableEquality Meta
m ≟ n = map′ (toℕ-injective _ _) (cong toℕ) (m ≈? n)