------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definitions for morphisms between algebraic structures
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Core
module Relation.Binary.Morphism.Definitions
  {a} (A : Set a)     -- The domain of the morphism
  {b} (B : Set b)     -- The codomain of the morphism
  where
open import Algebra.Core
open import Function.Base
open import Level using (Level)
private
  variable
    ℓ₁ ℓ₂ : Level
------------------------------------------------------------------------
-- Basic definitions
Homomorphic₂ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _
Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ = ∀ {x y} → x ∼₁ y → ⟦ x ⟧ ∼₂ ⟦ y ⟧
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.3
Morphism : Set _
Morphism = A → B
{-# WARNING_ON_USAGE Morphism
"Warning: Morphism was deprecated in v1.3.
Please use the standard function notation (e.g. A → B) instead."
#-}