{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.TotalOrder
{t₁ t₂ t₃} (T : TotalOrder t₁ t₂ t₃) where
open TotalOrder T
open import Data.Sum.Base using (inj₁; inj₂)
import Relation.Binary.Construct.Converse as Converse
import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict
import Relation.Binary.Properties.Poset poset as PosetProperties
open import Relation.Binary.Consequences
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
decTotalOrder : Decidable _≈_ → DecTotalOrder _ _ _
decTotalOrder ≟ = record
{ isDecTotalOrder = record
{ isTotalOrder = isTotalOrder
; _≟_ = ≟
; _≤?_ = total+dec⟶dec reflexive antisym total ≟
}
}
open PosetProperties public
using
( _≥_
; ≥-refl
; ≥-reflexive
; ≥-trans
; ≥-antisym
; ≥-isPreorder
; ≥-isPartialOrder
; ≥-preorder
; ≥-poset
)
≥-isTotalOrder : IsTotalOrder _≈_ _≥_
≥-isTotalOrder = Converse.isTotalOrder isTotalOrder
≥-totalOrder : TotalOrder _ _ _
≥-totalOrder = record
{ isTotalOrder = ≥-isTotalOrder
}
open TotalOrder ≥-totalOrder public
using () renaming (total to ≥-total)
open PosetProperties public
using
( _<_
; <-resp-≈
; <-respʳ-≈
; <-respˡ-≈
; <-irrefl
; <-asym
; <-trans
; <-isStrictPartialOrder
; <-strictPartialOrder
; <⇒≉
; ≤∧≉⇒<
; <⇒≱
; ≤⇒≯
)
≰⇒> : ∀ {x y} → ¬ (x ≤ y) → y < x
≰⇒> = ToStrict.≰⇒> Eq.sym reflexive total