{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.Group.Base private variable ℓ : Level G : Type ℓ isPropIsGroup : (1g : G) (_·_ : G → G → G) (inv : G → G) → isProp (IsGroup 1g _·_ inv) isPropIsGroup 1g _·_ inv = isOfHLevelRetractFromIso 1 IsGroupIsoΣ (isPropΣ (isPropIsMonoid 1g _·_) λ mono → isProp× (isPropΠ λ _ → mono .is-set _ _) (isPropΠ λ _ → mono .is-set _ _)) where open IsMonoid module GroupTheory (G : Group ℓ) where open GroupStr (snd G) abstract ·CancelL : (a : ⟨ G ⟩) {b c : ⟨ G ⟩} → a · b ≡ a · c → b ≡ c ·CancelL a {b} {c} p = b ≡⟨ sym (·IdL b) ∙ congL _·_ (sym (·InvL a)) ∙ sym (·Assoc _ _ _) ⟩ inv a · (a · b) ≡⟨ congR _·_ p ⟩ inv a · (a · c) ≡⟨ ·Assoc _ _ _ ∙ congL _·_ (·InvL a) ∙ ·IdL c ⟩ c ∎ ·CancelR : {a b : ⟨ G ⟩} (c : ⟨ G ⟩) → a · c ≡ b · c → a ≡ b ·CancelR {a} {b} c p = a ≡⟨ sym (·IdR a) ∙ congR _·_ (sym (·InvR c)) ∙ ·Assoc _ _ _ ⟩ (a · c) · inv c ≡⟨ congL _·_ p ⟩ (b · c) · inv c ≡⟨ sym (·Assoc _ _ _) ∙ cong (b ·_) (·InvR c) ∙ ·IdR b ⟩ b ∎ invInv : (a : ⟨ G ⟩) → inv (inv a) ≡ a invInv a = ·CancelL (inv a) (·InvR (inv a) ∙ sym (·InvL a)) inv1g : inv 1g ≡ 1g inv1g = ·CancelL 1g (·InvR 1g ∙ sym (·IdL 1g)) 1gUniqueL : {e : ⟨ G ⟩} (x : ⟨ G ⟩) → e · x ≡ x → e ≡ 1g 1gUniqueL {e} x p = ·CancelR x (p ∙ sym (·IdL _)) 1gUniqueR : (x : ⟨ G ⟩) {e : ⟨ G ⟩} → x · e ≡ x → e ≡ 1g 1gUniqueR x {e} p = ·CancelL x (p ∙ sym (·IdR _)) invUniqueL : {g h : ⟨ G ⟩} → g · h ≡ 1g → g ≡ inv h invUniqueL {g} {h} p = ·CancelR h (p ∙ sym (·InvL h)) invUniqueR : {g h : ⟨ G ⟩} → g · h ≡ 1g → h ≡ inv g invUniqueR {g} {h} p = ·CancelL g (p ∙ sym (·InvR g)) idFromIdempotency : (x : ⟨ G ⟩) → x ≡ x · x → x ≡ 1g idFromIdempotency x p = x ≡⟨ sym (·IdR x) ⟩ x · 1g ≡⟨ congR _·_ (sym (·InvR _)) ⟩ x · (x · inv x) ≡⟨ ·Assoc _ _ _ ⟩ (x · x) · (inv x) ≡⟨ congL _·_ (sym p) ⟩ x · (inv x) ≡⟨ ·InvR _ ⟩ 1g ∎ invDistr : (a b : ⟨ G ⟩) → inv (a · b) ≡ inv b · inv a invDistr a b = sym (invUniqueR γ) where γ : (a · b) · (inv b · inv a) ≡ 1g γ = (a · b) · (inv b · inv a) ≡⟨ sym (·Assoc _ _ _) ⟩ a · b · (inv b) · (inv a) ≡⟨ congR _·_ (·Assoc _ _ _ ∙ congL _·_ (·InvR b)) ⟩ a · (1g · inv a) ≡⟨ congR _·_ (·IdL (inv a)) ∙ ·InvR a ⟩ 1g ∎ congIdLeft≡congIdRight : (_·G_ : G → G → G) (-G_ : G → G) (0G : G) (rUnitG : (x : G) → x ·G 0G ≡ x) (lUnitG : (x : G) → 0G ·G x ≡ x) → (r≡l : rUnitG 0G ≡ lUnitG 0G) → (p : 0G ≡ 0G) → congR _·G_ p ≡ congL _·G_ p congIdLeft≡congIdRight _·G_ -G_ 0G rUnitG lUnitG r≡l p = rUnit (congR _·G_ p) ∙∙ ((λ i → (λ j → lUnitG 0G (i ∧ j)) ∙∙ cong (λ x → lUnitG x i) p ∙∙ λ j → lUnitG 0G (i ∧ ~ j)) ∙∙ cong₂ (λ x y → x ∙∙ p ∙∙ y) (sym r≡l) (cong sym (sym r≡l)) ∙∙ λ i → (λ j → rUnitG 0G (~ i ∧ j)) ∙∙ cong (λ x → rUnitG x (~ i)) p ∙∙ λ j → rUnitG 0G (~ i ∧ ~ j)) ∙∙ sym (rUnit (congL _·G_ p))